Math, asked by sajju5272, 11 months ago

2√3-√5/2√2+3√3 rationalise the denominator

Answers

Answered by pinky2211
7

Hey ✌

Here is your answer

 = 2 \sqrt{3}  -  \sqrt{5}  \div  \sqrt{2}  + 3 \sqrt{3}

 = (2 \sqrt{3}  -  \sqrt{5} )( \sqrt{2}  - 3 \sqrt{3} ) \div ( \sqrt{2}  + 3 \sqrt{3} )(\sqrt{2}  - 3 \sqrt{3} )

 = 2 \sqrt{6}  -  \sqrt{10}  - 54 + 3 \sqrt{15}  \div 2 - 27

 = 2 \sqrt{6}  -  \sqrt{10}  - 54 + 3 \sqrt{15}  \div  -  25

Denominator is - 25

HOPE it helps you and plz mark me as brainliest if this helped you...

Answered by Salmonpanna2022
3

Step-by-step explanation:

Given that:

 \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}   +  3 \sqrt{3} }  \\  \\

What to do:-

To rationalised the denominator.

Solution:-

We have,

 \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}   +  3 \sqrt{3} }  \\  \\

The denominator is 2√2+3√3. Multiplying the numerator and denominator by 2√2-3√3,

We get,

⟹ \frac{2 \sqrt{3}  -  \sqrt{5} }{2 \sqrt{2}   +  3 \sqrt{3} } \times  \frac{2 \sqrt{2} - 3 \sqrt{3}  }{2 \sqrt{2} - 3 \sqrt{3}  }   \\  \\

⟹ \frac{(2 \sqrt{3} -  \sqrt{5} )(2 \sqrt{2} - 3 \sqrt{3}   )}{(2 \sqrt{2 } + 3 \sqrt{3})(2 \sqrt{2} - 3 \sqrt{3}   ) }  \\  \\

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

⟹ \frac{2 \sqrt{2}  \times 2 \sqrt{2}  + 2 \sqrt{3}  \times ( - 3 \sqrt{3} ) + ( -  \sqrt{5})(2 \sqrt{2}) + ( -  \sqrt{5})( - 3 \sqrt{3}   ) }{(2 \sqrt{2} {)}^{2}  - (3 \sqrt{3}  {)}^{2}  }  \\  \\

⟹ \frac{4 \sqrt{6}  - 6 \sqrt{ {3}^{2} } - 2 \sqrt{10} + 3 \sqrt{15}   }{8 - 27}  \\  \\

⟹ \frac{4 \sqrt{6}  - 18 - 2 \sqrt{10} + 3 \sqrt{15}  }{ - 19}  \\  \\

⟹ \frac{ - (18 - 3 \sqrt{15} + 2 \sqrt{10}  - 4 \sqrt{6}  )}{ - 19}  \\  \\

⟹ \frac{  \cancel{- }(18 - 3 \sqrt{15} + 2 \sqrt{10}  - 4 \sqrt{6}  )}{  \cancel{- }19}  \\  \\

⟹ \frac{  18 - 3 \sqrt{15} + 2 \sqrt{10}  - 4 \sqrt{6}  }{ 19}  \:  \:   \tt \red{Ans}.\\  \\

Hence the denominator is rationalised.

Know more Algebraic Identities:-

(a+ b)² = a² + b² + 2ab

( a - b )² = a² + b² - 2ab

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

I hope it's help with...☺

Similar questions