2√3+√5 prove that is irrational
cherry5112:
somebody help me please
Answers
Answered by
2
may it will help you
Attachments:
Answered by
1
let m= 2√3+√5 be rational,if possible.
m-√5=2√3
m-√5/2 =√3
let if possible√3 be rational number
let √3=a/b where g.c.d(a,b) =1
3|a^2
3|a
let
3|b^2
3|b
3|a and 3|b
but g.c.d (a,b)=1
we come to contradiction
√3 is irrational
so,2√3+√5 is irrational
m-√5=2√3
m-√5/2 =√3
let if possible√3 be rational number
let √3=a/b where g.c.d(a,b) =1
3|a^2
3|a
let
3|b^2
3|b
3|a and 3|b
but g.c.d (a,b)=1
we come to contradiction
√3 is irrational
so,2√3+√5 is irrational
Similar questions