Math, asked by niftycall, 3 months ago

((2/3)^6)* ((9/4)^5)=(3/2)^(m+2) find the value of m​

Answers

Answered by Flaunt
351

\sf\huge\bold{\underline{\underline{{Solution}}}}

\sf  \large {( \frac{2}{3} )}^{6}  \times  {( \frac{9}{4}) }^{5}  =  ({ \frac{3}{2} )}^{m + 2}

\sf  \large\longmapsto { (\frac{2}{3} )}^{6}  \times ( { ({ \frac{3}{2}) }^{2}) }^{5}  =  { (\frac{3}{2} )}^{m + 2}

\sf \large \longmapsto {( \frac{2}{3} )}^{6}  \times  { (\frac{3}{2} )}^{10}  =  {( \frac{3}{2}) }^{m + 2}

\sf  \large\longmapsto {( \frac{2}{3} )}^{6}  =    { (\frac{3}{2} )}^{m + 2}  \div  { (\frac{3}{2}) }^{10}

Concept

When base are same power gets added in multiplication and gets substracted during division.

\sf  \large  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

\sf \large {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

\sf \large \longmapsto { (\frac{2}{3}) }^{6}  =  {( \frac{3}{2}) }^{m - 8}

\sf  \large\longmapsto {( \frac{3}{2}) }^{ - 6}  =  {( \frac{3}{2}) }^{m - 8}

Same bases on both so it gets automatically cancelled

\sf \longmapsto - 6 = m - 8

\sf \longmapsto \: m =  - 6 + 8

\sf \longmapsto \bold{ m = 2}

Check

\sf \large \longmapsto  {( \frac{2}{3}) }^{6}  \times  { (\frac{3}{2}) }^{10}  =   { (\frac{3}{2} )}^{m + 2}

\sf \large \longmapsto { (\frac{3}{2}) }^{ - 6}  \times  { (\frac{3}{2} )}^{10}  =  { (\frac{3}{2} )}^{4}

\sf \longmapsto \large \frac{3 \times 3 \times 3 \times 3}{2 \times 2 \times 2 \times 2}  =  \frac{81}{16}

\sf \longmapsto \large { (\frac{3}{2} )}^{m + 2}  =  {( \frac{3}{2} )}^{4}  =  \frac{81}{16}

Similar questions