(2.3)^x=(0.23)^y=1000, find the value of 1/x-1/y?
Need proper solution for the above sum?
Answers
Answered by
9
2.3^x = 0.23^y = 1000 x = log (base 2.3) of 1000 = log (1000) / log(2.3) y = log (base 0.23) of 1000 = log(1000) / log(0.23) Let's use base 10 for those logs, so we have: x = 3 / log(2.3) y = 3 / log(0.23) 1/x = log(2.3) / 3 1/y = log(0.23) / 3 (1/x) - (1/y) = (log(2.3) - log(0.23)) / 3 (1/x) - (1/y) = (log(2.3/0.23)) / 3 (1/x) - (1/y) = (log(10)) / 3 (1/x) - (1/y) = 1/3...hope it helps
Answered by
9
(2.3)x=(0.23)y=1000
(2.3)x=1000;(0.23)y=1000
(2.3)x=10³;(0.23)y=10³
2.3=10³/x ;2.310³/y
10³/x = 10³/y+¹
3/y=3/y +1
3(1/x)=3(1/y+1/3)
1/x=1/y+1/3
1/x-1/y=1/3
(2.3)x=1000;(0.23)y=1000
(2.3)x=10³;(0.23)y=10³
2.3=10³/x ;2.310³/y
10³/x = 10³/y+¹
3/y=3/y +1
3(1/x)=3(1/y+1/3)
1/x=1/y+1/3
1/x-1/y=1/3
shalini28:
mark as best
Similar questions