Physics, asked by rishuraj2908, 6 months ago

2.39. The resultant of two forces acting at an angle f 150°
is 10 N and is perpendicular to one of the forces. The
other force is​

Answers

Answered by Anonymous
2

\underline{\red{\frak{ \: Given:- \: }}} \\

  • Resultant of two force, R = 10N
  • \theta = 150°
  • \sf \vec{R} \perp \vec{A}

\underline{\red{\frak{ \: Find:- \: }}} \\

  • \sf |\vec{B}|

\underline{\red{\frak{ \: Diagram:- \: }}} \\

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(1.02,1.02){\framebox(0.3,0.3)}\put(5.36,1){\vector(1,0){3mm}}\put(1.79,4){\vector(-2,1){3mm}}\put(1,4.5){\vector(0,1){2mm}}\multiput(5.6,1)(0.3,0){9}{\line(1,0){1mm}}\qbezier(4.8,1.5)(6,1.9)(6.5,1)\put(0.5,3){$\bf  \overrightarrow{R} $}\put(4,2.4){$\bf  \overrightarrow{B} $}\put(3,0.4){$\bf \overrightarrow{A} $}\put(5,1.7){$\bf \theta =  {150}^{ \circ}  $} \end{picture}

\underline{\red{\frak{ \: Solution:- \: }}} \\

Here, we have

 \to\sf R^2 = A^2 + B^2 + 2AB \cos 159^{\circ} \\  \\

 \to\sf 10^2 = A^2 + B^2 + 2AB  \bigg(  \dfrac{ - \sqrt{3}}{2}  \bigg)\\  \\

 \to\sf 100 = A^2 + B^2 + AB  \bigg(   - \sqrt{3} \bigg)\\  \\

 \to\sf 100 = A^2 + B^2  -  \sqrt{3} AB \quad \bigg\lgroup Equation\:1\bigg\rgroup \\  \\

Now,

 \to \sf \tan  {90}^{ \circ}  = \dfrac{B\sin 150^{\circ}}{A + B\cos 150^{\circ}} \\  \\

 \to \sf \tan  {90}^{ \circ}  = \dfrac{B \times  \dfrac{1}{2} }{A + B \bigg( \dfrac{ -  \sqrt{3} }{2} \bigg)}\\  \\

 \to \sf \tan{90}^{ \circ}  =B \times  \dfrac{1}{2} \times  \dfrac{2}{A + B \big( -  \sqrt{3}\big)}  \\  \\

 \to \sf \tan{90}^{ \circ}  =B \times  \dfrac{1}{A + B \big( -  \sqrt{3}\big)}  \\  \\

 \to \sf \tan{90}^{ \circ}  = \dfrac{B}{2A  - \sqrt{3}  B}  \\  \\

 \to \sf  \infty = \dfrac{B}{2A  - \sqrt{3}  B}  \\  \\

 \to \sf 2A  - \sqrt{3}  B  = 0\\  \\

 \to \sf 2A   = \sqrt{3}  B\\  \\

 \to \sf A   =  \dfrac{\sqrt{3}}{2}  B\\  \\

Substituting the value of A in eq. 1

\sf\implies 100 = A^2 + B^2  -  \sqrt{3} AB  \\  \\

\sf\implies 100 =  \bigg( \dfrac{ \sqrt{3} }{2} B\bigg) ^2 + B^2  -  \sqrt{3} \bigg( \dfrac{ \sqrt{3} }{2} B\bigg)B  \\  \\

\sf\implies 100 = \dfrac{3}{4} B ^2 + B^2  -  \sqrt{3} \times \dfrac{ \sqrt{3} }{2} B \times B  \\  \\

\sf\implies 100 = \dfrac{1}{4} B ^2  \\  \\

\sf\implies 100 \times 4 =B ^2  \\  \\

\sf\implies 400 =B ^2  \\  \\

\sf\implies  \sqrt{400} =B \\  \\

\sf\implies 20N  =B \\  \\

 \underline{\boxed{\sf\therefore B = 20N}}

Similar questions