Math, asked by TbiaSupreme, 1 year ago

2+3cosx/sin²x,Integrate the given function w.r.t. x considering them well defined and integrable over proper domain.

Answers

Answered by abhi178
14
we have to find the value of \int{\frac{2+3cosx}{sin^2x}}\,dx

\int{\frac{2+3cosx}{sin^2x}}\,dx

=\int{\frac{2}{sin^2x}}\,dx+\int{\frac{3cosx}{sin^2x}},dx

=2\int{cosec^2x}\,dx+3\int{cotx.cosecx}\,dx

=2[-cotx]+3[-cosecx]+C

=-(2cotx+3cosecx)+C

=-\frac{2cosx+3}{sinx}+C
Answered by hukam0685
5
Dear Student,

Answer:
\int \frac{2 + 3 \: cos \: x}{ {sin}^{2}x } dx = - 2 \: cot \: x + 3 \: cosec \: x + c \\

Solution:

 \int\frac{2 + 3 \: cos \: x}{ {sin}^{2}x } dx \\ \\ \int\frac{2}{ {sin}^{2}x } dx + \frac{3 \: cos \: x}{ {sin}^{2} x} dx \\ \\ 2\int {cosec}^{2} x \: dx + 3\int\frac{cos \: x}{ {sin}^{2}x } dx
Since
 \int{cosec}^{2} x \: dx = - cot \: x + c
2\int {cosec}^{2} x \: dx = - 2 \: cot \: x + c

3\int \frac{cos \: x}{ {sin}^{2}x } \: dx =
let sin x = t

- cos x dx = dt

so substitute

 - 3 \int\frac{1}{ {t}^{2} } dt = - 3 \frac{ {t}^{ - 2 + 1} }{ - 2 + 1} + c \\ \\ = \frac{3}{t} + c \\ \\ undo \: substitution \\ \\ = \frac{3}{sin \: x} + c \\ \\ = 3 \: cosec \: x + c
add both integral

 = - 2 \: cot \: x + 3 \: cosec \: x + c
Hope it helps you.
Similar questions