Math, asked by thamannamohammad7, 5 months ago

2-√3i/1 + i in a+ib form​

Answers

Answered by snehaprajnaindia204
8

Answer:

(2- √3i)/(1+ i)

= (2-√3i)(1 - i)/ (1² - i²)

= (2 - √3 -2i - √3i)/ (1+1)

= (2-√3)/2  + i(-2 - √3)/2

∴ a = (2 - √3)/2

 b = (-2 -√3)/2

_ _ _ _ _ _ _ _ _ _ _ _ _

Step-by-step explanation:

Answered by sandy1816
2

 \frac{2 -  \sqrt{3} i}{1 + i}  \\  \\  =  \frac{2 -  \sqrt{3}i }{1 + i}  \times  \frac{1 - i}{1 - i}  \\  \\  =  \frac{2 - 2i -  \sqrt{3} i +  \sqrt{3} {i}^{2}  }{1 -  {i}^{2} }  \\  \\  =  \frac{2 - 2i -  \sqrt{3}i -  \sqrt{3}  }{2}  \\  \\  =  \frac{(2 -  \sqrt{3} ) - i(2 +  \sqrt{3} )}{2}  \\  \\  =  \frac{2 -  \sqrt{3} }{2}  + i[- ( \frac{2 +  \sqrt{3} }{2} )]

Similar questions