[2+3i/(7-i)(4+2i)=a+ib , then find a^2+b^2
Answers
Answered by
2
Answer:
given
2+3i/(7−i)(4+2i)
rationalize denominator
∴ 2+3i/(7−i)(4+2i) × (7+i)(4−2i)/(7+i)(4−2i)
= (2+3i) (7+i) (4−2i)/(7^2+1)(4^2+2^2)
= (14+23i−3)(4−2i)/50×20
= (11+23i)(4−2i)/1000
= 90+70i/1000
= A+iB
∴A = 90/1000 ; B = 70/1000
a^2+b^2 = (90/1000)^2 + (70/1000)^2
= (8100/1000000) + (4900/1000000)
= 0.0081 + 0.0049
= 0.013
Similar questions