Hindi, asked by gk689443, 7 hours ago

2--3और 4--5 केमध्य तीनतीन परिमेय संख्या ज्ञात करें

उतर 1​

Answers

Answered by uakwja
0

Answer:

We have given that,

\displaystyle{\sf\:3\:\cot\:A\:=\:4}3cotA=4

We have to find the value of

\displaystyle{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}}

3cosA−2sinA

3cosA+2sinA

Now,

\displaystyle{\sf\:3\:\cot\:A\:=\:4}3cotA=4

\displaystyle{\implies\boxed{\sf\:\cot\:A\:=\:\dfrac{4}{3}}}⟹

cotA=

3

4

Consider a right triangle ABC right angled at angle B.

We know that,

\displaystyle{\pink{\sf\:\cot\:A\:=\:\dfrac{Adjacent\:side}{Opposite\:side}}}cotA=

Oppositeside

Adjacentside

\displaystyle{\implies\sf\:\dfrac{4}{3}\:=\:\dfrac{AB}{BC}}⟹

3

4

=

BC

AB

\displaystyle{\implies\sf\:AB\:=\:4x}⟹AB=4x

\displaystyle{\sf\:BC\:=\:3x}BC=3x

Now, by Pythagoras theorem,

\displaystyle{\pink{\sf\:(\:AC\:)^2\:=\:(\:AB\:)^2\:+\:(\:BC\:)^2}}(AC)

2

=(AB)

2

+(BC)

2

\displaystyle{\implies\sf\:AC^2\:=\:(\:4x\:)^2\:+\:(\:3x\:)^2}⟹AC

2

=(4x)

2

+(3x)

2

\displaystyle{\implies\sf\:AC^2\:=\:16x^2\:+\:9x^2}⟹AC

2

=16x

2

+9x

2

\displaystyle{\implies\sf\:AC^2\:=\:25x^2}⟹AC

2

=25x

2

\displaystyle{\implies\sf\:AC\:=\:5x\:}⟹AC=5x

\displaystyle{\therefore\boxed{\sf\:Hypotenuse\:=\:5x}}∴

Hypotenuse=5x

Now, we know that,

\displaystyle{\pink{\sf\:\sin\:A\:=\:\dfrac{Opposite\:side}{Hypotenuse}}}sinA=

Hypotenuse

Oppositeside

\displaystyle{\implies\sf\:\sin\:A\:=\:\dfrac{3\:\cancel{x}}{5\:\cancel{x}}}⟹sinA=

5

x

3

x

\displaystyle{\implies\sf\:\sin\:A\:=\:\dfrac{3}{5}}⟹sinA=

5

3

\displaystyle{\implies\sf\:2\:\sin\:A\:=\:\dfrac{2\:\times\:3}{5}}⟹2sinA=

5

2×3

\displaystyle{\implies\boxed{\blue{\sf\:2\:\sin\:A\:=\:\dfrac{6}{5}}}}⟹

2sinA=

5

6

Now, we know that,

\displaystyle{\pink{\sf\:\cos\:A\:=\:\dfrac{Adjacent\:side}{Hypotenuse}}}cosA=

Hypotenuse

Adjacentside

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{4\:\cancel{x}}{5\:\cancel{x}}}⟹cosA=

5

x

4

x

\displaystyle{\implies\sf\:\cos\:A\:=\:\dfrac{4}{5}}⟹cosA=

5

4

\displaystyle{\implies\sf\:3\:\cos\:A\:=\:\dfrac{3\:\times\:4}{5}}⟹3cosA=

5

3×4

\displaystyle{\implies\boxed{\green{\sf\:3\:\cos\:A\:=\:\dfrac{12}{5}}}}⟹

3cosA=

5

12

Now, we have to find the value of

\displaystyle{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}}

3cosA−2sinA

3cosA+2sinA

\displaystyle{\implies\sf\:\dfrac{\dfrac{12}{5}\:+\:\dfrac{6}{5}}{\dfrac{12}{5}\:-\:\dfrac{6}{5}}}⟹

5

12

5

6

5

12

+

5

6

\displaystyle{\implies\sf\:\dfrac{\dfrac{12\:+\:6}{5}}{\dfrac{12\:-\:6}{5}}}⟹

5

12−6

5

12+6

\displaystyle{\implies\sf\:\dfrac{\dfrac{18}{5}}{\dfrac{6}{5}}}⟹

5

6

5

18

\displaystyle{\implies\sf\:\dfrac{18}{\cancel{5}}\:\times\:\dfrac{\cancel{5}}{6}}⟹

5

18

×

6

5

\displaystyle{\implies\sf\:\cancel{\dfrac{18}{6}}}⟹

6

18

\displaystyle{\implies\sf\:3}⟹3

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:\dfrac{3\:\cos\:A\:+\:2\:\sin\:A}{3\:\cos\:A\:-\:2\:\sin\:A}\:=\:3\:}}}}∴

3cosA−2sinA

3cosA+2sinA

=3

Answered by choukseypiyush250
0

hello you answer is here dear

14

hope it is helpful

mark me brahinlist

Similar questions