Math, asked by shaurya1107, 9 months ago

2/3x+1/2(x-5)=3/2(x-1)​

Answers

Answered by Anonymous
4

Answer:

x =  \frac{ - 6  +  \sqrt{132} }{12}  \\  \\ x =  \frac{ - 6 -  \sqrt{132} }{12}

Step-by-step explanation:

 \frac{2}{3x}  +  \frac{1}{2}(x - 5) =  \frac{3}{2} (x - 1) \\  \\  =  >  \frac{2}{3x}  +  \frac{x - 5}{2}  =  \frac{3x - 3}{2}  \\  \\  =  >   \frac{(2 \times 2) + 3x(x - 5)}{3x \:  \times  2}   =  \frac{3x - 3}{2}  \\  \\  =  >  \frac{4 +  {3x}^{2} - 15x }{  \cancel 6x}  = \frac{3x - 3}{ \cancel 2}  \\  \\  =  >  \frac{4 +  {3x}^{2}  - 15x}{3x}  =  \frac{3x - 3}{1}  \\  \\  =  > 4 + 3 {x}^{2}   - 15x = 3x(3x - 3) \\  \\  =  > 4 + 3 {x}^{2}   - 15x =9 {x}^{2}  - 9x \\  \\  =  > 0 = 9 {x}^{2}  - 3 {x}^{2}  - 9x + 15x - 4 \\  \\  =  > 0 = 6 {x}^{2}  + 6x - 4 \\  \\ Using \: quadratic \: formula \\  \\ Here \\ a = 6 \\ b = 6 \\ c =  - 4 \\  \\ Quadratic \: formula \:  =  \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \sqrt{ {b}^{2}  - 4ac}  \\  =   \sqrt{ {6}^{2} - (4 \times 6 \times  - 4) }  \\  \\  =  \sqrt{36 - ( - 96)}  \\  =  \sqrt{36 + 96}  \\  =  \sqrt{132} \\   \\ x = \frac{ - b +  -  \sqrt{ {b}^{2}  - 4ac}   }{2a}  \\  \\ x =  \frac{ - 6 +  \sqrt{132} }{2 \times 6}  \\  \\ x =  \frac{ - 6 +  \sqrt{132} }{12}  \\  \\  \\  \\  \\ x =  \frac{ - 6 -  \sqrt{132} }{6 \times 2}  \\ x =  \frac{ - 6 -  \sqrt{132} }{12}

HOPE IT HELPS YOU

THANKS !


Cynefin: Well done(◍•ᴗ•◍)
Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

 \displaystyle \:  \frac{2}{3x}  +  \frac{1}{2(x - 5)}  =  \frac{3}{2(x - 1)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{3}{2(x - 1)}  - \frac{1}{2(x - 5)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{3(x - 5) - (x - 1)}{2(x - 1)(x - 5)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{(3x - 15 - x  +  1)}{2(x - 1)(x - 5)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{(2x - 14)}{2(x - 1)(x - 5)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{2(x - 7)}{2(x - 1)(x - 5)}

 \implies \:  \displaystyle \:  \frac{2}{3x}    =  \frac{(x - 7)}{(x - 1)(x - 5)}

 \implies \:  \displaystyle \:  2(x - 1)(x - 5) = 3x(x - 7)

 \implies \:  \displaystyle \:  2( {x}^{2} - 6x + 5 ) = 3( {x}^{2}  - 7x)

 \implies \:  \displaystyle \:  2 {x}^{2} - 12x + 10  = 3 {x}^{2}  - 21x

 \implies \:  \displaystyle  {x}^{2}  - 9x - 10 = 0

 \implies \:  \displaystyle  {x}^{2}  - 10x + x - 10 = 0

 \implies \:  \displaystyle x(x - 10) + 1(x - 10) = 0

 \implies \:  \displaystyle (x - 10)(x + 1) = 0

We know that if the product of two real numbers are zero then either of them are zero

So

either \:  \: x - 10 = 0 \:  \:  \: or \:  \: x + 1 = 0

Now

x - 10 = 0 \:  \: gives \:  \: x = 10

And

x + 1 = 0 \:  \:  \: gives \:  \:  \: x =  - 1

RESULT

  \red{\fbox{THE  \: REQUIRED \:  SOLUTION \:  IS \:   x = - 1 , 10}}

Similar questions