(2/3x+4)(3/2x+6)-(1/7x-1)(1/7x+1)
Answers
Answered by
1
Step-by-step explanation:
Answer:
\dfrac{(8x + 35) (6x + 35)}{49}
49
(8x+35)(6x+35)
Step-by-step explanation:
(\dfrac{2}{3}x + 4)( \dfrac{3}{2}x + 6) - (\dfrac{1}{7}x - 1)(\dfrac{1}{7}x + 1)(
3
2
x+4)(
2
3
x+6)−(
7
1
x−1)(
7
1
x+1)
Expand:
= (\dfrac{2}{3}x)(\dfrac{3}{2}x) + (\dfrac{2}{3}x)(6) + 4(\dfrac{3}{2}x) + 4(6) - [ (\dfrac{1}{7}x)^2 - (1)^2]=(
3
2
x)(
2
3
x)+(
3
2
x)(6)+4(
2
3
x)+4(6)−[(
7
1
x)
2
−(1)
2
]
Evaluate each term:
= x^2 + 4x + 6x + 24 - \dfrac{1}{49}x^2 +1=x
2
+4x+6x+24−
49
1
x
2
+1
Combine like terms:
= \dfrac{48}{49}x^2 + 10x + 25=
49
48
x
2
+10x+25
Put into single fraction:
= \dfrac{48x^2 + 490x + 1225}{49}=
49
48x
2
+490x+1225
Factorise:
= \dfrac{(8x + 35) (6x + 35)}{49}=
49
(8x+35)(6x+35)
Similar questions