Math, asked by dhanpanchal007, 1 month ago

2. 44. A square and a rectangle have the same perimeter. If the side of the square is 16 m and the length of the rectangle is 18 m, the breadth of the rectangle is (A) 14 m (B) 15 m (C) 16 m (D) 17 m

Answers

Answered by SparklingBoy
262

\large \clubs \:  \bf Given  :  -

  • A square and a rectangle have the same perimeter.

  • The side of the square is 16 m

  • The length of the rectangle is 18 m.

----------------------

\large \clubs \:  \bf  To  \: Find  :  -

  • The Breadth of the Rectangle

----------------------

\large \clubs \:  \bf  Formulae \:    Used:  -

Perimeter of Square :

\large \text{P}_{ \text{(Square)}} =  \text{4a }

Where

  • a = Side Length of the Square

Perimeter of Rectangle :

\large\text P_{\text{(Rectangle)}}\text{ = 2(l + b)}

Where ,

  • l = Length of Rectangle

  • b = Breadth of Rectangle

----------------------

\large \clubs \:  \bf  Solution :  -

We Have,

  • Side of Square = a = 16 m

Hence,

 \large\text{P}_{ \text{(Square)}} =  \text{4a } \\  \\ \large = 4  \times  16

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf {P}_{{(Square)}} = {64 \: {m}  }} }}}

Also,

Length of Rectangle = l = 18m

Let Breadth of Rectangle = b

Hence,

\large\text P_{\text{(Rectangle})}\text{ = 2(18 + b)}

\purple{ \large:\longmapsto \underline {\boxed{{\bf P_{{Rectangle}}{ = 36 + 2b}} }}}\\

According To Question :

 \large\red{\text{P}_{ \text{(Square)}} = \text P_{\text{(Rectangle)}}}

:\longmapsto64 = 36 + 2 \text b

:\longmapsto2 \text b = 28

:\longmapsto \text b =  \cancel \dfrac{28}{2}

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf b = 14} }}}

Hence,

 \large\underline{\pink{  \underline{ \pmb{\frak{Breadth  \: of  \:  Rectangle = 14 \:  m }}}}}

   \large\underline{\pmb{ \green{  \underline{\mathfrak { \text So  \: Option  \:  \text A \:  is \:  Correct }}}}}

----------------------

Answered by MяMαgıcıαη
270

Question

\:

A square and a rectangle have the same perimeter. If the side of the square is 16 m and the length of the rectangle is 18 m, then breadth of the rectangle is :

  • (A) 14 m

  • (B) 15 m

  • (C) 16 m

  • (D) 17 m

\:

Answer

\:

  • Option (A) 14 m is correct.

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

Step - By - Step Explanation

\:

Given that

\:

  • Perimeter of square = Perimeter of rectangle.

  • Side of square = 16 m.

  • Length of rectangle () = 18 m.

\:

To Find

\:

  • Breadth of rectangle (b)?

\:

Solution

\:

\clubsuit Formulae Used

\:

  • Perimeter (square) = 4 × side

  • Perimeter (rectangle) = 2( + b)

\:

★ Finding perimeter of square :

\:

➦ ㅤPerimeter (square) = 4 × side

\:

➦ ㅤPerimeter (square) = 4 × 16

\:

➦ㅤ Perimeter (square) = 64

\:

  • Therefore, perimeter of square is 64 .

\:

According to the Question :

\:

➥ Perimeter of rectangle = Perimeter of square

\:

➥ㅤ 2(ℓ + b) = 64

\:

➥ㅤ 2(18 + b) = 64

\:

➥ㅤ (2 × 18) + (2 × b) = 64

\:

➥ㅤ 36 + 2b = 64

\:

➥ㅤ 2b = 64 - 36

\:

➥ㅤ 2b = 28

\:

➥ㅤ b = \sf {\cancel{\dfrac{28}{2}}}

\:

➥ㅤ b = 14

\:

  • Therefore, breadth of rectangle is 14 m. So, Option (A) 14 m is correct.

\:

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\:

Know More

\:

  • Perimeter of rectangle = 2( + b)

  • Perimeter of square = 4 × side

  • Perimeter of circle = r

  • Perimeter of equilateral ∆ = 3 × side

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions