Math, asked by mathew2162, 6 days ago

2,
45.
If y = sin (2 sin-2x), then (1 - x^2) y, is equal to :

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\sf{y=sin\left(2\,sin^{-1}(x)\right)}

\sf{\implies\,y_{1}=cos\left(2\,sin^{-1}(x)\right)\cdot\dfrac{d}{dx}\left(2\,sin^{-1}(x)\right)}

\sf{\implies\,y_{1}=cos\left(2\,sin^{-1}(x)\right)\cdot\dfrac{2}{\sqrt{1-{x}^{2}}}}

\sf{\implies\,\sqrt{1-{x}^{2}}\cdot\,y_{1}=2\,cos\left(2\,sin^{-1}(x)\right)}

Differentiating both sides,

\sf{\implies\,y_{1}\cdot\dfrac{d}{dx}\left(\sqrt{1-{x}^{2}}\right)+\sqrt{1-{x}^{2}}\cdot y_{2}=\dfrac{d}{dx}\left(2\,cos\left(2\,sin^{-1}(x)\right)\right)}

\sf{\implies\,y_{1}\cdot\dfrac{-2x}{2\sqrt{1-{x}^{2}}}+\sqrt{1-{x}^{2}}\cdot y_{2}=-2\,sin\left(2\,sin^{-1}(x)\right)\cdot\dfrac{d}{dx}\left(2\,sin^{-1}(x)\right)}

\sf{\implies\,-\dfrac{x\cdot y_{1}}{\sqrt{1-{x}^{2}}}+\sqrt{1-{x}^{2}}\cdot y_{2}=-2\,sin\left(2\,sin^{-1}(x)\right)\cdot\dfrac{2}{\sqrt{1-{x}^{2}}}}

\sf{\implies\,-x\cdot y_{1}+\left(1-{x}^{2}\right)\cdot y_{2}=-2\,sin\left(2\,sin^{-1}(x)\right)\cdot2}

\sf{\implies\,-x\cdot y_{1}+\left(1-{x}^{2}\right)\cdot y_{2}=-4\,sin\left(2\,sin^{-1}(x)\right)}

\sf{\implies\,-x\cdot y_{1}+\left(1-{x}^{2}\right)\cdot y_{2}=-4y}

\sf{\implies\,\left(1-{x}^{2}\right)\cdot y_{2}=xy_{1}-4y}

Similar questions