2. નિયમિત બહુકોણના વિકર્ણોની સંખ્યા શોધવાનું સૂત્ર લખો. આ સૂત્ર દ્વારા નીચેની બાજુઓ ધરાવતા નિયમિત બહુકોણના વિકર્ણોની સંખ્યા શોધો : 1) નિયમિત પંચકોણ (2) નિયમિત પકોણ (3) નિયમિત ચતુષ્કોણ (4) નિયમિત દસકોણ ( 5) નિયમિત પંદરકોણ (6) ત્રિકોણ.
Answers
Step-by-step explanation:
1) 60 2) 90 3)20
1)243%65+5**5000==+7954534%- 8*5767
54243%6-4+2-/
345%497 7
3431%49524346.
4 43%6+52+.
13133151343+%-9546* %*. 7
7643%-%-511-38487484 %644
45463481676-
737516546%+.747,816781%873487 1.7813.
687+86774
49565065856181
8
586298 198 1951 98 1904
381 68%1681
0 06%268%198 11831286181.
61%68%168%168%6%11
60%%%%%
Finding the number of diagonals in a regular polygon is as follows:
n(n-3)/2
where "n" is the regular polygon's number of sides.
The number of diagonals for the following regular polygons may be determined using this formula:
Pentagon regular: n = 5 n(n-3)/2 = 5(5-3)/2 = 5 diagonals
Regular hexagon: n = 6, n(n-3)/2, 6(6-3), 2 = 9, etc.
n = 4 and n(n-3)/2 = 4(4-3)/2 = 2 diagonals in a regular quadrilateral.
n = 10 and n(n-3)/2 = 10(10-3)/2 = 35 diagonals on a regular decagon.
Heptagon regular: n = 7, n(n-3)/2, 7(7-3)/2, and 14 diagonals.
Triangle: n = 3, n(n-3)/2, 3, and n(3-3)/2, which equal zero.
Consequently, by inserting the number of sides "n" into the formula, we can get the number of diagonals for any regular polygon.
For more questions on Math
https://brainly.in/question/40245038
#SPJ3