Math, asked by mitesh4562, 23 days ago

2. નિયમિત બહુકોણના વિકર્ણોની સંખ્યા શોધવાનું સૂત્ર લખો. આ સૂત્ર દ્વારા નીચેની બાજુઓ ધરાવતા નિયમિત બહુકોણના વિકર્ણોની સંખ્યા શોધો : 1) નિયમિત પંચકોણ (2) નિયમિત પકોણ (3) નિયમિત ચતુષ્કોણ (4) નિયમિત દસકોણ ( 5) નિયમિત પંદરકોણ (6) ત્રિકોણ.​

Answers

Answered by tejasht470
0

Step-by-step explanation:

1) 60 2) 90 3)20

1)243%65+5**5000==+7954534%- 8*5767

54243%6-4+2-/

345%497 7

3431%49524346.

4 43%6+52+.

13133151343+%-9546* %*. 7

7643%-%-511-38487484 %644

45463481676-

737516546%+.747,816781%873487 1.7813.

687+86774

49565065856181

8

586298 198 1951 98 1904

381 68%1681

0 06%268%198 11831286181.

61%68%168%168%6%11

60%%%%%

Answered by syed2020ashaels
0

Finding the number of diagonals in a regular polygon is as follows:

n(n-3)/2

where "n" is the regular polygon's number of sides.

The number of diagonals for the following regular polygons may be determined using this formula:

Pentagon regular: n = 5 n(n-3)/2 = 5(5-3)/2 = 5 diagonals

Regular hexagon: n = 6, n(n-3)/2, 6(6-3), 2 = 9, etc.

n = 4 and n(n-3)/2 = 4(4-3)/2 = 2 diagonals in a regular quadrilateral.

n = 10 and n(n-3)/2 = 10(10-3)/2 = 35 diagonals on a regular decagon.

Heptagon regular: n = 7, n(n-3)/2, 7(7-3)/2, and 14 diagonals.

Triangle: n = 3, n(n-3)/2, 3, and n(3-3)/2, which equal zero.

Consequently, by inserting the number of sides "n" into the formula, we can get the number of diagonals for any regular polygon.

For more questions on Math

https://brainly.in/question/40245038

#SPJ3

Similar questions