Math, asked by arnav2123, 1 year ago

2-√5/2+√5=a√5+b find rational number a and b

Answers

Answered by DaIncredible
225
Hey friend,
Here is the answer you were looking for:
 \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  = a \sqrt{5}  + b \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\  \\ using \: the \: identities \\  {(a -b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {(2)}^{2} +  {( \sqrt{5}) }^{2}  - 2(2)( \sqrt{5} ) }{ {(2)}^{2} -  {( \sqrt{5} })^{2}  }  \\  \\  =  \frac{4 + 5 - 4 \sqrt{5} }{4 - 5}  \\  \\  =  \frac{9 - 4 \sqrt{5} }{ - 1}  \\  \\  =  - (9 - 4 \sqrt{5} ) \\  \\  =  - 9 + 4 \sqrt{5}  \\  \\ 4 \sqrt{5}  - 9 = a \sqrt{5}  + b \\  \\ a = 4 \\  \\ b =  - 9


Hope this helps!!!

@Mahak24

Thanks...
☺☺

kanatheboss: thanks yrr one more question
Similar questions