Math, asked by renka, 1 year ago

2/5^2x+6×2/5^3=2/5^x+2. find the value of x

Answers

Answered by dhruvsh
12
  \frac{2}{5} ^{2x + 6} *   \frac{2}{5} ^{3} =    \frac{2}{5} ^{x +2}

Now,
2/5 ^2x + 6 + 3 = 2/5 ^x+2
2/5 ^2x + 9 = 2/5 ^x+2
∵As the bases are equal so the powers are also equal.
∴2x + 9 = x + 2
∴2x - x = 2 - 9
x = -7.


renka: could u ans one more problem
dhruvsh: yaa sure
dhruvsh: please ask
renka: verify (3p/7+7/6p)^2-(3/7p+7/6p)^2=2
Answered by BloomingBud
4

Hi   \:  \: !!! \\  \\ <br /><br />Here  \:  \: is  \:  \: your  \:  \: answer,  \\  \\ <br /> {( \frac{2}{5}) }^{2x + 6}  \times  {( \frac{2}{5} )}^{3}  =  { (\frac{2}{5} )}^{x + 2}  \\  \\  =  &gt; ( { \frac{2}{5} )}^{2x + 6 + 3}  = { (\frac{2}{5} )}^{x + 2} \\  \\  =  &gt; ( { \frac{2}{5} )}^{2x + 9}  = { (\frac{2}{5} )}^{x + 2} \\ <br />  Bases  \:  \: are \:  \: same \:  \\ now \:  \: equating \:  \: their \:  \: powers \\  =  &gt; 2x + 9 = x + 2 \\  =  &gt; 2x - x = 2 - 9 \\  =  &gt; x =  - 7<br /><br /> \\  \\  \\ Verification  \\ <br />(L.H.S) \\  {( \frac{2}{5} )}^{2x + 6}  \times  ({ \frac{2}{5} )}^{3}  \\   \\  =  {( \frac{2}{5} )}^{2x + 6 + 3 }  \\  \\  =  {( \frac{2}{5} )}^{2x + 9}  \\  \\  =  {( \frac{2}{5} )}^{2 \times ( - 7) + 9}  \\  \\  =  {( \frac{2}{5}) }^{ - 14 + 9}  \\  \\  =  {( \frac{2}{5} )}^{ - 5} \\  \\ <br /> \\ (R.H.S) \\  {( \frac{2}{5} )}^{x + 2}  \\  \\  =  {( \frac{2}{5} })^{  \: - 7 + 2}  \\  \\  =  {( \frac{2}{5}) }^{ - 5}  \\  \\  \\ Hence, \\  L.H.S = R.H.S \\  \\ \\ Hope \:  \: it \:  \: helps.
Similar questions