Math, asked by roshansv, 8 months ago

(2/5)^-3×(2/5)^15=(2/5)^2+3x

Answers

Answered by tusar2240
0

Answer:

x = 5

Step-by-step explanation:

Changes made to your input should not affect the solution:

(1): "x2"   was replaced by   "x^2".

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :

                    1/15*x^2+5/3-(2/3*x)=0

                2

Simplify   —

                 3

   1       5   2

 ((——•(x2))+—)-(—•x)  = 0  

   15       3   3

Simplify   —

           3

Equation at the end of step

2

:

    1            5     2x

 ((—— • (x2)) +  —) -  ——  = 0  

   15            3     3  

STEP  

3

:

            1

Simplify   ——

           15

Equation at the end of step

3

:

    1          5     2x

 ((—— • x2) +  —) -  ——  = 0  

   15          3     3  

STEP

4

:

Equation at the end of step 4

  x2    5     2x

 (—— +  —) -  ——  = 0  

  15    3     3  

STEP

5

:

Calculating the Least Common Multiple

5.1    Find the Least Common Multiple

     The left denominator is :       15  

     The right denominator is :       3  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

3 1 1 1

5 1 0 1

Product of all  

Prime Factors  15 3 15

     Least Common Multiple:

     15  

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 5

Similar questions