Math, asked by malik45, 1 year ago

2√5 -√3 / √5 +√3 + √6 + √2 / 2√6 -√2

Answers

Answered by DaIncredible
0
Hey friend,
Here is the answer you were looking for:
 \frac{2 \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  +  \frac{ \sqrt{6}  +  \sqrt{2} }{2 \sqrt{6} -  \sqrt{2}  }  \\

On rationalizing the denominators we get :

 =  \frac{2 \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  +  \frac{ \sqrt{6} +  \sqrt{2}  }{2 \sqrt{6}  -  \sqrt{2} }  \times  \frac{2 \sqrt{6} -  \sqrt{2}  }{2 \sqrt{6}  -  \sqrt{2} }  \\

Using the identity :

(x + y)(x - y)  =  {x}^{2}  -  {y}^{2}
 =  \frac{2 \sqrt{5}( \sqrt{5} -  \sqrt{3}  ) -  \sqrt{3} (  \sqrt{5}  - \sqrt{3}  )}{ {( \sqrt{5} )}^{2} -  {( \sqrt{3}) }^{2}  }  +  \frac{ \sqrt{6}(2 \sqrt{6}  +  \sqrt{2}) +  \sqrt{2} (2 \sqrt{6}   +  \sqrt{2} )}{ {(2 \sqrt{6}) }^{2} -  {( \sqrt{2} )}^{2}  }  \\  \\  =  \frac{2 \times 5 - 2 \sqrt{15} -  \sqrt{15}   + 3}{5  - 3}  +  \frac{2 \times 6 +  \sqrt{12}  + 2 \sqrt{12}  + 2}{24 - 2}  \\  \\  =  \frac{10 + 3 - 3 \sqrt{15} }{2}  +  \frac{12 + 2 + 3 \sqrt{12} }{22}  \\  \\  =  \frac{13 - 3 \sqrt{15} }{2}  +  \frac{14 + 3 \sqrt{2 \times 2 \times 3} }{22}  \\  \\  =  \frac{13 - 3 \sqrt{15} }{2}  +  \frac{14 + 3 \times 2 \sqrt{3} }{22}  \\  \\  =  \frac{13 - 3 \sqrt{15} }{2}  +  \frac{14 + 6 \sqrt{3} }{22}  \\

Taking LCM of 22 and 2 we get 22

 =  \frac{13 \times 11 - 3 \sqrt{15} \times 11 + 14 \times 1 + 6 \sqrt{3}   \times 1}{22}  \\  \\  =  \frac{143 - 33 \sqrt{15} + 14 + 6 \sqrt{3}  }{22}  \\  \\  =  \frac{157 - 33 \sqrt{15} + 6 \sqrt{3}  }{22}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions