Math, asked by amitrajni8005, 1 month ago

2/√5+√3
 \frac{2}{ \sqrt{5}  +  \sqrt{3 +} } +  \frac{1}{ \sqrt{3}  -  \sqrt{2} }  -  \frac{3}{ \ \sqrt{5}  +  \sqrt{2} }

Answers

Answered by 12thpáìn
215

Rationalize

{ \sf\frac{2}{ \sqrt{5} + \sqrt{3 } } + \frac{1}{ \sqrt{3} - \sqrt{2} } - \frac{3}{ \sqrt{5} + \sqrt{2} }}

\underline{\mathsf{\green{One~ Rationalizing~ The~ Denominator}}}

{ \implies\sf\frac{2}{ \sqrt{5} + \sqrt{3 } }  \times  \frac{ \sqrt{5 } -  \sqrt{3}  }{ \sqrt{5} -  \sqrt{3}  } + \frac{1}{ \sqrt{3} - \sqrt{2} } \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  + \sqrt{2}  }  - \frac{3}{ \ \sqrt{5} + \sqrt{2} } \times  \frac{ \sqrt{5} -  \sqrt{2}  }{ \sqrt{5} -  \sqrt{2}  } }

{\implies \sf\frac{2( \sqrt{5} -  \sqrt{3})  }{ (\sqrt{5} )^{2} -  ( \sqrt{3 })^{2}  } + \frac{ \sqrt{3    } +  \sqrt{2}  }{ (\sqrt{3})^{2}  - (\sqrt{2} )^{2} } - \frac{3( \sqrt{5}  -  \sqrt{2}) }{ ( \sqrt{5} )^{2}  - ( \sqrt{2})^{2}  }}

{\implies \sf\frac{2 \sqrt{5} -  2\sqrt{3}  }{5 - 3 } + \frac{ \sqrt{3    } +  \sqrt{2}  }{ 3 - 2 } - \frac{3 \sqrt{5}  - 3 \sqrt{2}}{ 5 - 2  }}

{\implies \sf\frac{2 \sqrt{5} -  2\sqrt{3}  }{2 } + \frac{ \sqrt{3    } +  \sqrt{2}  }{ 1 } - \frac{3 \sqrt{5}  - 3 \sqrt{2}}{ 3  }}

Taking LCM of 2,1 and 3 =6

 \implies\sf  \frac{3(2 \sqrt{5} - 2 \sqrt{3}) + 6 (\sqrt{3}  +  \sqrt{2})   - 2(3 \sqrt{5} -  3\sqrt{2})   }{6}

\implies\sf  \frac{6 \sqrt{5} - 6 \sqrt{3} + 6 \sqrt{3}  + 6 \sqrt{2}   - 6 \sqrt{5} -  6\sqrt{2}}{6}

\implies\sf  \frac{ \pink{ \cancel{6 \sqrt{5} }}- \green{  \cancel{6 \sqrt{3}}} +  \green{\cancel{ 6 \sqrt{3}}}  +   \orange{\cancel{6 \sqrt{2}}}   - \green{ 6 \sqrt{5}} -   \orange{6\sqrt{2}}}{6}

~~~~~~~~~~~~~~~~~~~~~ \implies\sf  \frac{0}{6}

~~~~~~~~~~~~~~~~~~~~~\implies\sf  0

Hope It Helpful ❣️

Answered by ShaikhTaassukAhmed
1

Answer:

2√2

Hopefully, it will HELP you and if it Please give it a BRAINLIEST.

Thank you EVERYONE, for EVERYTHING.

Attachments:
Similar questions