Math, asked by Sarhvika, 1 year ago

(2+5i/3-2i)+(2-5i/3+2i) =? complex numbers ​

Answers

Answered by brunoconti
14

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by payalchatterje
2

Answer:

Required value is ( -  \frac{8}{13} )

Step-by-step explanation:

Here given expression is  \frac{2 + 5i}{3 - 2i}  +  \frac{2 - 5i}{3 + 2i}

This is problem of Complex number of Algebra.

 \frac{(2 + 5i)(3  +  2i)}{(3 - 2i)(3 + 2i)} +  \frac{(2 - 5i)(3 - 2i)}{(3 + 2i)(3 - 2i)}  \\  =  \frac{6 + 4i + 15i + 10 {i}^{2} }{ {3}^{2} -  {(2i)}^{2}  }   +  \frac{6 - 4i - 15i  + 10 {i}^{2} }{ {3}^{2}  -  {(2i)}^{2} }\\ = \frac{6 + 19i - 10}{9 + 4}  +  \frac{6 - 19i - 10}{9 + 4}  \\  =  \frac{19i - 4}{13}  +  \frac{ - 19i - 4}{13} \\ =  \frac{19 - 4 - 19i - 4}{13} \\ =  \frac{ - 8}{13} \\ =  -  \frac{8}{13}

Here applied formula,

 {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

Some important formulas of Algebra,

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

Similar questions