Math, asked by kamaleshayyappan578, 8 months ago

2√6-√5/3√5-2√6 rationalise the denominator and simplify​

Answers

Answered by Crystal7vv
11

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large{\color{magenta}{\fbox{\textsf{\textbf{Solution:}}}}}

 \longrightarrow \:  \:  \bf \purple{{ \frac{2 \sqrt{6} +  \sqrt{5}  }{3 \sqrt{5}  - 2 \sqrt{6} } }}

  \space

 =  \rm{ \frac{2 \sqrt{6 } +  \sqrt{5}  }{3 \sqrt{5} - 2 \sqrt{6}} \times  \frac{3 \sqrt{5} + 2 \sqrt{6}  }{3 \sqrt{5} + 2 \sqrt{6}  }(rationalisation\:of \:denominator )  }

 \space

 =  \rm{ \frac{(2 \sqrt{6}  +  \sqrt{5})(3  \sqrt{5}   + 2  \sqrt{6} ) }{9 \times 5 - 4 \times 6} }

 \space

 =  \rm{ \frac{(2 \sqrt{6} \times 3 \sqrt{5}  + 2 \sqrt{6} \times 2 \sqrt{6}   +  \sqrt{5}  \times 3 \sqrt{5}  +  \sqrt{5}  \times 2 \sqrt{6}  )}{45 - 24} }

 \space

 =  \rm{ \frac{(6 \sqrt{30}  + 24 + 15 + 2 \sqrt{30}) }{21} }

 \space

 \red{ =} \bf \green{ \frac{39 + 8 \sqrt{3} }{21} }

Similar questions