Math, asked by immajoryt1, 3 months ago

2(a^2+b^2)=(a+b)^2show that a=b​

Answers

Answered by darshika1w
0

here is your answer

  • hope you understand the answer

Make Me Brainliest !!

Attachments:
Answered by Dinosaurs1842
4

Given :-

  • 2(a² + b²) = (a+b)²

Aim :-

  • To show that a = b

2(a² + b²) = (a+b)²

Let us expand on both the sides,

  • (a+b)² = a² + 2ab + b² [By applying identity]

→ 2a² + 2b² = a² + 2ab + b²

Let us transpose each term to the LHS (Left hand side of the equation) one by one.

Transposing a²

→ 2a² + 2b² - a² = 2ab + b²

Subtracting,

→ 2b² + a² = 2ab + b²

Transposing b²,

→ 2b² + a² - b² = 2ab

Subtracting,

→ a² + b² = 2ab

Transposing 2ab,

→ a² + b² - 2ab = 0

The LHS (Left hand side) of the equation formed is an identity.

  • a² + b² - 2ab = (a-b)²

By expressing a² + b² - 2ab as (a-b)²,

(a-b)² = 0

Transposing the power,

(a-b) = √0

\sqrt[n]{0} \: \sf{will \: always \: be \: zero}.

Hence,

(a - b) = 0

Transposing (-b) to the RHS (Right hand side) we get :-

a = b

Hence proved.

Identities :-

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² - 2ab + b²
  • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (x+a)(x+b) = x² + x(a+b) + ab
  • a²-b² = (a+b)(a-b)
  • (a+b)³ = a³ + 3a²b + 3ab² + b³
  • (a-b)³ = a³ - 3a²b + 3ab² - b³
  • a³+b³ = (a+b)(a² - ab + b²)
  • a³-b³ = (a-b)(a² + ab + b²)
  • a³+b³+c³ - 3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)

Similar questions