Math, asked by abcd1508, 9 months ago

2.

(a) A bar 100 cm long, with insulated sides, has its ends kept at 0° Celsius and 100° Celsius until
steady state condition prevails. The two ends are then suddenly insulated and kept so. Find
the temperature distribution.​

Answers

Answered by ayushboss70
8

Answer:

i think world is gol ok bye

Answered by akankshabharatiyasl
0

Answer:

u (x,t)={400\over π}\sum_ {oddn}{1\over n}e^{−({nπα\over 100})^2t }sin {nπx\over 100}u(x,t)=

π

400

oddn

n

1

e

−(

100

nπα

)

2

t

sin

100

nπx

Step-by-step explanation:

The heat flow flow equation is

\nabla ^2u(x,t)={1\over \alpha ^2}{\partial u\over \partial t}...................(i)∇

2

u(x,t)=

α

2

1

∂t

∂u

...................(i)

where u(x, t)u(x,t) is the temperature. Because the sides of the bar are insulated, the heat flows only in the xx direction; the same happens for a slab of finite thickness but infinitely large. The initial condition is u(x, 0) = 100u(x,0)=100 and the boundary condition for t > 0t>0 is u(0, t) = u(100, t) = 0u(0,t)=u(100,t)=0 . We search for a solution of the form u(x, t) = F(x)T(t)u(x,t)=F(x)T(t) ; the differential equation (i)(i) gives

{∂ ^2F\over ∂x^2} + k ^2F = 0 , \implies F = A cos kx + B sin kx.............(ii)

∂x

2

2

F

+k

2

F=0,⟹F=Acoskx+Bsinkx.............(ii)

{∂T\over ∂t} = −k^2α^2T , \implies T = e^{−k^2α^2t}....................(iii)

∂t

∂T

=−k

2

α

2

T,⟹T=e

−k

2

α

2

t

....................(iii)

Because of the boundary condition in x = 0x=0 , we have A = 0A=0 . To satisfy u(100, t) = 0u(100,t)=0 , we find discrete values of k:k:

sin 100k = 0 ,\implies k_n ={nπ\over100},sin100k=0,⟹k

n

=

100

, .........(iv).........(iv) ,for n = 1, 2, 3, . . .n=1,2,3,...

Finally, we must satisfy the initial condition

u(x, 0) =\displaystyle\sum_{n=1}^∞b_n sin{nπx\over 100}= 100 ...............(v)u(x,0)=

n=1

b

n

sin

100

nπx

=100...............(v) ,for 0 ≤ x ≤ 10.0≤x≤10.

Now,solving for b_nb

n

we have

b_n ={2\over 100} \int_0^{100 }sin{nπx\over 100}dx = −{200\over nπ}cos{nπx\over 100}\mid_0^{100}b

n

=

100

2

0

100

sin

100

nπx

dx=−

200

cos

100

nπx

0

100

={200\over nπ}[1 − (−1)^n]=

200

[1−(−1)

n

]

= \begin{cases} {400\over \pi n}&\text{for }{odd} {n} \\ 0 &\text{for } {even} n \end{cases}={

πn

400

0

for oddn

for evenn

..............(vii)..............(vii)

after using cos (nπ )= (−1)^ncos(nπ)=(−1)

n

for integer nn . The solution to the differential equation (i)(i) with the given boundary conditions is then

u (x,t)={400\over π}\sum_ {oddn}{1\over n}e^{−({nπα\over 100})^2t }sin {nπx\over 100}u(x,t)=

π

400

oddn

n

1

e

−(

100

nπα

)

2

t

sin

100

nπx

where “odd n” means a sum over n = 1, 3, 5, . . ..

Similar questions