Physics, asked by vl907942, 2 months ago


2. A bus decreases its speed from 80 km h'1 to 60 km h-1 in 5 s. Find the acceleration of the
bus.​

Answers

Answered by Yuseong
7

Explanation:

As per the provided information in the given question, we have :

  • Initial velocity (u) = 80 km/h
  • Final velocity (v) = 60 km/h
  • Time taken (t) = 5s

We are asked to calculate the acceleration of the bus.

Acceleration is defined as rate of change in velocity with time. Its SI unit is m/s². So, we'll be calculating the acceleration in its SI unit.

Here, we can solve this question in two ways,

  • By using the formula of acceleration.
  • by using the first equation of motion.

But before commencing the steps, let's first convert the given velocities in m/s.

Converting initial velocity 80 km/h into m/s :

 \\ \longrightarrow \sf{\quad { 1 \; km/h = \dfrac{5}{18} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 80 \; km/h = 80 \times \dfrac{5}{18} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 80 \; km/h = 40 \times \dfrac{5}{9} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 80 \; km/h =  \dfrac{200}{9} \; m/s }} \\

 \\ \longrightarrow \bf{\quad \underline{80 \; km/h =  22.22 \; m/s  }} \\

Converting final velocity 60 km/h into m/s :

 \\ \longrightarrow \sf{\quad { 1 \; km/h = \dfrac{5}{18} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 60 \; km/h = 60 \times \dfrac{5}{18} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 60 \; km/h = 30 \times \dfrac{5}{9} \; m/s }} \\

 \\ \longrightarrow \sf{\quad { 60 \; km/h =  \dfrac{150}{9} \; m/s }} \\

 \\ \longrightarrow \bf{\quad \underline{60 \; km/h =  16.66 \; m/s  }} \\

★ Calculating acceleration by using acceleration formula :

 \\ \longrightarrow \quad \pmb{\boxed{\sf {a = \dfrac{v -u}{t} }} }\\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

Substituting values,

 \\ \longrightarrow \sf{\quad {a = \dfrac{16.66 - 22.22}{5} \; m/s^2 }} \\

 \\ \longrightarrow \sf{\quad {a = \cancel{\dfrac{-5.55}{5} }\; m/s^2 }} \\

 \\ \longrightarrow \bf{\quad \underline{a=  -1.11 \; m/s^2 }} \\

Calculating acceleration by using the first equation of motion :

 \\ \longrightarrow \quad \pmb{\boxed{\sf { v = u + at}} }\\

  • v denotes final velocity
  • u denotes initial velocity
  • a denotes acceleration
  • t denotes time

Substituting values,

 \\ \longrightarrow \sf{\quad { 16.66 = 22.22 + 5a}} \\

 \\ \longrightarrow \sf{\quad { 16.66 - 22.22= 5a}} \\

 \\ \longrightarrow \sf{\quad { -5.55= 5a}} \\

 \\ \longrightarrow \sf{\quad { \cancel{\dfrac{-5.55}{5} } = a }} \\

 \\ \longrightarrow \bf{\quad \underline{a=  -1.11 \; m/s^2 }} \\

Therefore, acceleration of the bus is -1.11 m/s².

Similar questions