Math, asked by sarkarmousumi210, 1 month ago


2. A can do a job in 15 days, and B in 10 days. How many days will they take to finish the job
if they work together?

Answers

Answered by CharithraD
1

Answer:

30

Step-by-step explanation:

LCM of 15 and 10= 30 (process in the pic below.) Therefore, Ans--> The number of days A&B can do the work together is 30.

Answered by SachinGupta01
11

 \bf \underline{Given} :

 \sf  \implies A  \: can  \: do \:  a \:  job  \: in  \: 15  \: days.

 \sf  \implies B  \: can  \: do \:  same \:  job  \: in  \: 10 \:  days.

 \bf \underline{To  \: find} :

Total number of days which A and B will take if they will work together.

 \bf \underline{\underline{Solution } }

 \sf  \implies A's  \: one  \: day \:  job =  \dfrac{1}{15}

 \sf  \implies B's  \: one  \: day \:  job =  \dfrac{1}{10}

 \sf  \implies  Work \: done\: by \:A \: and \: B \:together =\dfrac{1}{15}   \: +  \:   \dfrac{1}{10}

 \sf Take \:  LCM  \: to \:  make \:  the  \: denominators \:  same.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\: \: 15 - 10\:\:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:15 - 5\:\:\:}} \\\underline{\sf{5}}&{\underline{\sf{\:\:5 - 5\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf  LCM   = 2 \times 3 \times 5 = 30

 \sf  \implies   \dfrac{1 \times 2 = 2}{15 \times 2 = 30}   \: +  \:   \dfrac{1 \times 3 = 3}{10 \times 3= 30}

 \sf  \implies   \dfrac{2}{30}   \: +  \:   \dfrac{3}{30}

 \sf Take  \: denominators \:  as \:  common.

 \sf  \implies   \dfrac{2 + 3}{30}    =  \dfrac{5}{30}

 \sf  \implies \dfrac{5}{30}  \:  = \dfrac{1}{6}

Hence, A and B together can complete the work in 6 days.

Similar questions