2. A chord of a circle is equal to the radius of the
circle. Find the angle subtended by the chord at
a point on the minor arc and also at a point on the
major arc.
Answers
Answered by
1
Answer:
,
Here, the chord AB is equal to the radius of the circle. In the above diagram, OA and OB are the two radii of the circle.
Now, consider the ΔOAB. Here,
AB = OA = OB = radius of the circle.
So, it can be said that ΔOAB has all equal sides and thus, it is an equilateral triangle.
∴ AOC = 60°
And, ACB = ½ AOB( central angle) or 10.8 theorem
So, ACB = ½ × 60° = 30°
Now, since ACBD is a cyclic quadrilateral,
ADB +ACB = 180° (Since they are the opposite angles of a cyclic quadrilateral)
So, ADB = 180°-30° = 150°
So, the angle subtended by the chord at a point on the minor arc and also at a point on the major arc are 150° and 30° respectively
hopes it more helpful for you।।।
Attachments:
Similar questions