2) A cubic polynomial has at the most three zeroes.true or false
Answers
Answered by
4
Heya mate!!
Answer:
True
Step-by-step explanation:
Hope it's helpful to you
Answered by
0
Answer:
the right answer is false
Step-by-step explanation:
We can have cubic polynomials having less than 3 zeroes.
For example, The polynomial y = x3 + x2 + x + 1 has a degree of 3 but has only one real root, that is, x = -1.
The polynomial y = x3 + 11x2 + 6x + 1 also has only one zero, that is, x = -0.096.
A cubic polynomial can have a minimum of one zero, as a cubic curve always cuts the x-axis at least once.
Check out more about polynomial functions of degree 3 using the cubic function formula.
Hence, it is false that every polynomial function of degree 3 with real coefficients has exactly three real zeros.
Similar questions