Physics, asked by jlawmi, 9 months ago

2. A metallic cube of each side is 5cm is subjected to a
shearing force of 120 kgf. The top face is displaced
through 0.2 with respect to the buttom face.
Calculate the following.
1.Shearing stress
2.Shearing strain
3shear modulus

Answers

Answered by MaIeficent
48

Explanation:

Given:-

  • Each side of a metallic cube = 5cm.

  • Shearing force = 120kgf

  • Change in length = 0.2cm

To find:-

  • Shearing stress

  • Shearing strain

  • Shear modulus.

Solution:-

\sf Shearing \: force = 120kgf

\sf As \: we \: know \: that:-

\sf \dashrightarrow 1kgf = 10N

\sf \dashrightarrow 120kgf = 120 \times 10

\sf \dashrightarrow 1200N

\sf \therefore\underline {Shearing \: force\: (F) = 1200N}

\sf Side\: of \: cube = 5cm = 0.05m

\sf Area\: of \: cube (A)= 0.05 \times 0.05\:= 0.0025m^{2}

\sf \triangle l = 0.2cm = 0.002m

\sf Now,\: Shearing \: stress \: (\tau) = \dfrac{F}{A}

\sf \implies \tau= \dfrac{1200}{0.0025}

\sf \implies  \tau= 480000

\sf \implies \tau = 4.8\times 10^{5} N/{m}^{2}

\sf \dashrightarrow \underline{\: \: \underline{ \: \pink{ Shearing \: stress = 4.8\times 10^{5}N/{m}^{2}}\: }\: \:}

\sf Shearing \: strain \: (\varepsilon) = \dfrac{\triangle l}{l}

\sf\implies \varepsilon = \dfrac{0.002}{0.05}

\sf \implies\varepsilon = 0.04

\sf \dashrightarrow \underline{\: \: \underline{ \: \orange{ Shearing \: strain = 0.04}\: }\: \:}

\sf Shearing \: modulus  = \dfrac{Shearing \: stress}{Shearing \: strain}

\sf = \dfrac{4.8 \times 10^{5}}{0.04}

\sf = 1.2\times 10^{7}

\sf \dashrightarrow \underline{\: \: \underline{ \: \purple{ Shearing \: modulus = 1.2 \times 10^{7}N/{m}^{2}}\: }\: \:}

Similar questions