Math, asked by nishantsharmagamhari, 4 months ago


2. A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new
numbers becomes twice the other new number. What are the numbers?

Answers

Answered by anyasingh535
79

Answer:

1 st no. = x = 7

2 nd no. = 5x = 7X 5 = 35

Step-by-step explanation:

1 st no. = x

2 nd no. = 5 times x so 5x

ATQ,

                              2(x+21)=5x+21

                               2x+42=5x+21                                                                                                                                          

                               2x-5x=21-42                                          

                                     3x=21

                                      x=21/3=7

                                  1 st no. = x = 7

                         2 nd no. = 5x = 7X 5 = 35

                                       


BrainIyMSDhoni: Good :)
Answered by TheBrainliestUser
136

Answer:

The numbers are:

  • First number = 35
  • Second number = 7

Step-by-step explanation:

Let us assume:

  • First number be x.
  • Second number be y.

Here, x > y

Given that:

  • A positive number is 5 times another number.

→ x = 5y _____(i)

  • 21 is added to both the numbers, then one of the new numbers becomes twice the other new number.

→ x + 21 = 2(y + 21) _____(ii)

To Find:

  • What are the numbers?

Finding the numbers:

In equation (ii),

→ x + 21 = 2(y + 21)

  • Substituting the value of x.

→ 5y + 21 = 2(y + 21)

→ 5y + 21 = 2y + 42

→ 5y - 2y = 42 - 21

→ 3y = 21

→ 3 × y = 3 × 7

  • Both sides 3 cancelled.

→ y = 7

Now, In equation (i),

→ x = 5y

→ x = 5 × 7

→ x = 35

The numbers are:

  • First number = x = 35
  • Second number = y = 7


BrainIyMSDhoni: Superb :)
Similar questions