Physics, asked by ishwarikamble2004, 5 months ago

2. A shell as fired at an angle of 30° to the horizontal
with a velocidy of 19.6 ms find its (1) Horizontal range
(2) Maximum height (given g=9.8 ms )​

Answers

Answered by Anonymous
5

Given :

  • Angle of Projection (θ) = 30°.

  • Velocity of the shell (u) = 19.6 m/s.

  • Acceleration due to gravity (g) = 9.8 m/s².

To find :

  • Horizontal Range (R).

  • Maximum height (h).

Solution :

To find the horizontal range of the shell :

We know the Equation for Horizontal range i.e,

\boxed{\bf{R = \dfrac{u^{2}\sin2\theta}{2g}}}

Where :

  • R = Range

  • u = Initial Velocity

  • θ = Angle of Projection

  • g = Acceleration due to gravity

Now using the equation for horizontal range and substituting the values in it, we get :

:\implies \bf{R = \dfrac{u^{2}\sin2\theta}{2g}} \\ \\ \\

:\implies \bf{R = \dfrac{19.6^{2} \times \sin2\theta}{2 \times 9.8}} \\ \\ \\

:\implies \bf{R = \dfrac{19.6 \times 19.6 \times \sin2\theta}{19.6}} \\ \\ \\

:\implies \bf{R = 19.6 \times \sin2\theta} \\ \\ \\

We know that ,

\bf{\sin2\theta = 2sin\theta cos\theta}

By substituting it in the equation , we get :

:\implies \bf{R = 19.6 \times  2sin\theta cos\theta} \\ \\ \\

:\implies \bf{R = 19.6 \times 2sin30^{\circ}cos30^{\circ}} \\ \\ \\

:\implies \bf{R = 19.6 \times  2 \times \dfrac{1}{2} \times \dfrac{\sqrt{3}}{2}}\quad \bf{\bigg[\because \bigg(sin30^{\circ} = \dfrac{1}{2}\bigg)\:;\:\bigg(cos30^{\circ} = \dfrac{\sqrt{3}}{2}\bigg)\bigg]} \\ \\ \\

:\implies \bf{R = 19.6 \times  \not{2} \times \dfrac{1}{\not{2}} \times \dfrac{\sqrt{3}}{2}}  \\ \\ \\

:\implies \bf{R = 19.6 \times \dfrac{\sqrt{3}}{2}}  \\ \\ \\

:\implies \bf{R = 9.8 \times \sqrt{3}}  \\ \\ \\

:\implies \bf{R = 9.8\sqrt{3}}  \\ \\ \\

\boxed{\therefore \bf{R = 9.8\sqrt{3}\:m}}  \\ \\ \\

Hence the Horizontal Range of the shell is 9.8√3 m.

To find the Maximum height reached :

We know the third Equation of Motion ,i.e,

\boxed{\bf{v^{2} = u^{2} \pm 2gh}}

Where :

  • v = Final Velocity.
  • u = Initial Velocity.
  • g = Acceleration due to gravity.
  • h = Height.

From the third Equation of Motion , we get :

:\implies \bf{v^{2} = u^{2} \pm 2gh} \\ \\ \\

[Note : Since , the object is moving upward ,i.e, against the gravity, the acceleration due to gravity will be taken as negative]

:\implies \bf{v^{2} = u^{2} - 2gh} \\ \\ \\

We know that,

\bf{v = u cos\theta}

So , substituting it in the equation , we get :

:\implies \bf{(u cos\theta)^{2} = u^{2} - 2gh} \\ \\ \\

:\implies \bf{u^{2}cos^{2}\theta = u^{2} - 2gh} \\ \\ \\

:\implies \bf{0 = u^{2} - u^{2}cos^{2}\theta - 2gh} \\ \\ \\

:\implies \bf{0 = u^{2}(1 - cos^{2}\theta) - 2gh} \\ \\ \\

We know that ,

\bf{1 - cos^{2}\theta = sin^{2}\theta}

So , substituting it in the equation , we get :

:\implies \bf{0 = u^{2}sin^{2}\theta - 2gh} \\ \\ \\

:\implies \bf{- u^{2}sin^{2}\theta = - 2gh} \\ \\ \\

:\implies \bf{\not{-} u^{2}sin^{2}\theta = \not{-} 2gh} \\ \\ \\

:\implies \bf{u^{2}sin^{2}\theta = 2gh} \\ \\ \\

:\implies \bf{\dfrac{u^{2}sin^{2}\theta}{2g} = h} \\ \\ \\

:\implies \bf{h_{max} = \dfrac{u^{2}sin^{2}\theta}{2g}} \\ \\ \\

Now by substituting the values in it, we get :

:\implies \bf{h_{max} = \dfrac{19.6^{2} \times sin^{2}30^{\circ}}{2 \times 9.8}} \\ \\ \\

:\implies \bf{h_{max} = \dfrac{19.6 \times 19.6 \times sin^{2}30^{\circ}}{19.6}} \\ \\ \\

:\implies \bf{h_{max} = 19.6 \times sin^{2}30^{\circ}} \\ \\ \\

:\implies \bf{h_{max} = 19.6 \times \bigg(\dfrac{1}{2}\bigg)^{2}} \quad \bf{\bigg(\because sin30^{\circ} = \dfrac{1}{2}}\bigg) \\ \\ \\

:\implies \bf{h_{max} = 19.6 \times \dfrac{1}{4}} \\ \\ \\

:\implies \bf{h_{max} = 4.9} \\ \\ \\

\boxed{\therefore \bf{h_{max} = 4.9\:m}} \\ \\ \\

Hence the maximum height reached is 4.9 m.

Similar questions