Math, asked by kanhaiya7052, 28 days ago

2
(a) Simplify 3x (4x - 5) + 3 and find its value
(b) Simplify a (a + a +1) + 5 and find its value for (i) a = 0, (ii) a=1
(iii) a=-1.
n​

Answers

Answered by 12thpáìn
5

Correct Question

  • (a) Simplify 3x(4x-5)+3 and find its value (i) x= 3 (ii) x= 1/2
  • (b) Simplify a (a + a +1) + 5 and find its value for (i) a = 0, (ii) a=1 (iii) a=-1.n

Solution

_______________________

(a) Simplify 3x(4x-5)+3 and find its value (i) x= 3 (ii) x= 1/2

\sf~~~~\implies 3x(4x-5)+3 = (3x \times 4x) - (3x \times 5) + 3

\sf~~~~\implies 3x(4x-5)+3 =  {12x}^{2}   -  15x + 3

For x= 3

\sf~~~~   \:  \:  \: {12x}^{2}   -  15x + 3 =12 \times(  {3}^{2} )  -  15 \times (3)+ 3

 \sf\quad \quad \quad \quad \quad \quad \quad \quad =12 \times(  {3}^{2} )  -  15 \times (3)+ 3

 \sf\quad \quad \quad \quad \quad \quad \quad \quad =(12 \times9)  -  45+ 3

\sf\quad \quad \quad \quad \quad \quad \quad \quad =108  -  45+ 3

\sf\quad \quad \quad \quad \quad \quad \quad \quad =108 -  42

\sf\quad \quad \quad \quad \quad \quad \quad \quad =66 \\  \\

For x= 1/2

\sf~~~~   \:  \:  \: {12x}^{2}   -  15x + 3 =12 \times \bigg(   \dfrac{1}{2}  \bigg )^{2}   -  15 \times\bigg(   \dfrac{1}{2}  \bigg ) + 3

 \sf\quad \quad \quad \quad \quad \quad \quad \quad=    \dfrac{12}{4}    -   \dfrac{15}{2}  + 3

 \sf\quad \quad \quad \quad \quad \quad \quad \quad=    3    -   \dfrac{15}{2}  + 3

 \sf\quad \quad \quad \quad \quad \quad \quad \quad=    6   -   \dfrac{15}{2}

\sf\quad \quad \quad \quad \quad \quad \quad \quad=     \dfrac{12 - 15}{2}

\sf\quad \quad \quad \quad \quad \quad \quad \quad=     \dfrac{ - 3}{2}   \\  \\  \\

_______________________

_______________________

(b) Simplify a(a+a+1)+5 and find its value for (i) a = 0, (ii) a=1 (iii) a=-1.n

\sf~~~~\implies a(a+a+1)+5  = a³ + a² + a +5

For a = 0

Putting the value in expression

\sf~~~~\implies a³ + a² + a +5 =  {0}^{3}  +  {0}^{2}  + 0 + 5

  \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =  5

For a= 1

Putting the value in expression

\sf~~~~\implies a³ + a² + a +5 =  {1}^{3}  +  {1}^{2}  + 1+ 5

  \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =  1 + 1 + 1 + 5

  \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =  8 \\  \\  \\

For a=(-1)

\sf~~~~\implies a³ + a² + a +5 =  { - 1}^{3}  +  { - 1}^{2}   - 1+ 5

  \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =  -  1 + 1  -  1 + 5

  \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =    - 2 + 6

 \sf\:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: =   4

______________________

Answered by MysticSohamS
0

Answer:

hey here is your solution

so pls mark it as brainliest

Step-by-step explanation:

1.

so 3x(4x-5)+3

=12x square-15x+3

also then

a(a+a+1)+5

=a(2a+1)+5

=2a square+a+5

so first substituting value of a as 0

we would get

(2×0)+0+5

=5

now substituting value of a as 1

so we get

2×(1)square+1+5

=2+1+5

=8

now substituting value of a as -1

so we get

2×(-1) square+(-1)+5

=(2-1)+5

=1+5

=6

Similar questions