Math, asked by shashankdhasmana, 7 months ago

2. A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The
diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find the
inner surface area of the vessel.​

Answers

Answered by Ataraxia
19

Solution :-

Hemisphere :-

Diameter = 14 cm

Radius = 14/2 = 7 cm

Curved surface area of hemisphere = \sf 2\pi r^2

\longrightarrow \sf 2 \times \dfrac{22}{7} \times 7^2 \\\\\longrightarrow 2 \times \dfrac{22}{7} \times 7 \times 7 \\\\\longrightarrow 2 \times 22 \times 7 \\\\\longrightarrow 308 \ cm^2

Cylinder :-

Height of the cylinder = Total height - Radius of hemisphere

                                     = 13 - 7

                                     = 6 cm

Radius of cylinder = Radius of hemisphere

                              = 7 cm

Curved surface area of cylinder = \sf 2\pi r h

\longrightarrow \sf 2 \times \dfrac{22}{7} \times 7 \times 6 \\\\\longrightarrow 2 \times 22 \times 6 \\\\\longrightarrow 264  \ cm^2

According to the question :-

Inner surface area of the vessel = Curved surface area of hemisphere + Curved surface area of cylinder

\longrightarrow \sf 308 + 264 \\\\\longrightarrow 572 \ cm^2

Inner surface area of the vessel = 572 cm²

Answered by Anonymous
17

\underline{\sf{\red{Given:-}}}

  • \sf\ Radius=7cm
  • \sf\ Height\: of\: the\: cylindrical\: portion\:13−7=6cm.

\underline{\sf{\red{To\: Find:-}}}

  • \sf\ Inner\: surface\:area\:of\:the\: vessel

\sf\ Area\: of \:a\: Curved \:surface\: of\: cylindrical\: portion\: is,

\dashrightarrow\: \sf\ 2πrh

\dashrightarrow\: \sf\ 2× \dfrac{22}{7} ×7×6

\dashrightarrow\: \sf\ 264cm^2

\sf\ Area\: of \:a \:curved \:of \:hemispherical\: portion\: is

\dashrightarrow\: \sf\ 2πr^2

\dashrightarrow\: \sf\ 2× \dfrac{22}{7} ×7×7

\dashrightarrow\: \sf\ 308cm^2

\sf\ total\: surface\: area\: is

\dashrightarrow\: \sf\ 308+264

\dashrightarrow\: \sf\ 572cm^2

Hence,

  • \sf\ Total \:surface \:area = 572cm^2
Attachments:
Similar questions