2. ABC is a right triangle right angled at B.
Let D and E be any points on AB and
BC respectively.
(AS)
Prove that AE? + CD= AC? + DE.
Answers
Answered by
9
Step-by-step explanation:
As ΔABE is right angled triangle, then,
⇒ (AE)²=(AB)²+(BE)² ............(1)
Similarly, ΔDBC is right angled triangle, so,
⇒ (CD)²=(BD)²+(BC)² ............(2)
Add equation (1) and (2),
⇒ (AE)²+(CD)²=(AB²+BE²)+(BD²+BC²)
⇒ (AE)²+(CD)²=(AB²+BC²)+(BD²+BE²) ............(3)
In ΔABC,
AC²=AB²+BC²
In ΔDBE,
⇒ DE²=BE²+BD²
So, equation (3) becomes,
⇒ (AE)²+(CD)²=(AC)²+(DE)²
[Hence proved]
Similar questions
Social Sciences,
2 months ago
Social Sciences,
2 months ago
English,
2 months ago
English,
5 months ago
Economy,
5 months ago
Math,
11 months ago
Math,
11 months ago
Math,
11 months ago