Math, asked by dishitabansal09, 1 month ago

2 adjacent angles of a parallelogram are in ratio 3:4 find all angles of parallelogram
pls help anyone​

Answers

Answered by SachinGupta01
7

\bf \underline{ \underline{\maltese\:Given} }

 \sf  Ratio  \: of  \: adjacent \:  angles  \: of  \: a \:  parallelogram = 3 : 4

\bf \underline{\underline{\maltese\: To \: find }}

 \sf Measure  \: of \:  each \: angles \:  of \:  the  \: parallelogram.

\bf \underline{\underline{\maltese\: Solution }}

Let us assume that, the measures of two adjacent angles of a parallelogram be (3x) and (4x).

\bf \underline{\underline{\maltese\: Diagram }}

\setlength{\unitlength}{1cm}\thicklines \begin{picture}(10,10) \qbezier(0,0)(2.5,0)(5,0) \qbezier(0,0)(0.5,1.5)(1,3) \qbezier(5,0)(5.5,1.5)(6,3) \qbezier(1,3)(3,3)(6,3) \qbezier(0.6,0)(0.6,0.3)(0.2,0.6) \qbezier(0.8,2.4)(1.4,2.4)(1.6,3) \put(1.5,2.2){\huge{\textsf{3x}}} \put(0.3,0.3){ \huge{ \textsf{4x}}} \put( - 0.5, - 0.5){ \huge{B}}\put(5, - 0.5){ \huge{C}}\put(0.5, 3.3){ \huge{A}}\put( 6, 3.3){ \huge{D}}\end{picture}

 \bf   \underline{As  \: we  \: know  \: that} :

 \boxed{  \purple{\sf  Sum  \: of  \: two  \: adjacent \:  angles \:  of  \: a \:  parallelogram \:  is  \: 180^{\circ}}}

 \bf \underline{ Now},

 \sf \implies 3x + 4x = 180^{\circ}

 \sf \implies 7x = 180^{\circ}

 \sf \implies x =  \dfrac{180}{7}

 \bf \bigstar Value \: of \: 3x

 \sf \implies 3x = 3 \times\dfrac{180}{7}

 \sf \implies 3x \approx 77.14285714

 \bf \bigstar Value \: of \: 4x

 \sf \implies 4x = 4 \times\dfrac{180}{7}

 \sf \implies 4x \approx 102.85714285

 \bf \underline{ Now},

We know that, the opposite angles of a parallelogram are equal.

 \sf \angle ABC = \angle ADC

  \sf So, \angle ADC = 102.85714285

 \bf And

 \sf \angle BAD = \angle DCB

  \sf So, \angle DCB = 77.14285714

 \bf \underline{Hence, the\: angles \:are} :

 \sf \implies  ABC =102.85714285

 \sf \implies BAD = 77.14285714

 \sf \implies ADC =  102.85714285

 \sf \implies DCB = 77.14285714

Similar questions