Physics, asked by nitinharshchoudhary, 5 months ago

2. An object of height 2 cm is placed at a distance of
15 cm from a concave mirror of focal length 10 cm.
Draw a scale diagram to locate the image. From the
diagram, find the length of the image formed.

Answers

Answered by Anonymous
8

Solution:-

Given:-

 \to \rm object \: height \: (h_{o})  = 2cm

 \to \rm \: focal \: length(f) \:  = 10cm

 \to \rm \: object \: \: distance(u) = 15 \: cm \:

To find

 \rm \: length \: of \: the \: image \: or \: height \: of \: image \: (h_{i})

Now using sign conventions

:- focal length is always negative in Concave mirror

\to \rm \: focal \: length(f) \:  =  - 10cm

:- object is opposite to Incident ray

\to \rm \: object \: \: distance(u) =  - 15 \: cm \:

Formula

 \to \rm \:  \dfrac{1}{f}  =  \dfrac{1}{u}  +  \dfrac{1}{v}

Now we get

 \to \rm \:  \dfrac{1}{ - 10}  =  \dfrac{1}{ - 15}  +  \dfrac{1}{v}

 \rm \:  \to \dfrac{ - 1}{10}  +  \dfrac{1}{15}  =  \dfrac{1}{v}

 \rm \to \:  \dfrac{1}{v}  =  \dfrac{ - 3 + 2}{ 30 }

 \rm \:  \to \:  \dfrac{1}{v}  =   \dfrac{ - 1}{30}

 \rm \to \: v =  - 30 \: cm \:

We have to find image height

 \rm \: m =  \dfrac{ - v}{u}  =  \dfrac{h_{i}}{h_{o} }

Now

  \to \rm \:  \dfrac{ - ( - 30)}{ - 15}  =  \dfrac{x}{2}

 \rm \:  \to \:  - 2  \times 2 = x

 \rm \: h _{i} =  - 4cm

So length of image is - 4cm

Attachments:
Answered by Theopekaaleader
1

1

= 30−3+2

1

= 30−1

→v=−30cm

We have to find image height

Now

−15−(−30)

= 2x

2 = x→−2×2=x

=−4cm

So length of image is - 4cm

Similar questions