Physics, asked by nikita1399, 1 year ago


2. An object starting from rest travels 120 m in first 2 s and 260 m in next 4 s. Find
its velocity in 6 s after it starts.

Answers

Answered by kamdarparam5
1

Answer:

Given :

The period of revolution (t) of a planet around the sun depends upon radius (r) of the orbit, mass (m) of the sun and gravitational constant (G), mathematically :

\implies \sf [T] \propto [r]^a [m]^b [G]^c⟹[T]∝[r]

a

[m]

b

[G]

c

Adding k as dimensionaless constant :

\begin{gathered}\implies \sf [T] = k [r]^a [m]^b [G]^c \: \: \: \: \:... (i)\\ \end{gathered}

⟹[T]=k[r]

a

[m]

b

[G]

c

...(i)

• DIMENSIONS:

\begin{gathered}\dag \bf \: Dimensions \: of \: period\:of\: revolution \: (t) = [M^0L^0T^1] \\ \end{gathered}

†Dimensionsofperiodofrevolution(t)=[M

0

L

0

T

1

]

\begin{gathered}\dag \bf \: Dimensions \: of \: radius \: (r) = [M^0L^1T^0] \\ \end{gathered}

†Dimensionsofradius(r)=[M

0

L

1

T

0

]

\begin{gathered}\dag \bf \: Dimensions \: of \: mass \: (m) = [M^1L^0T^0] \\\end{gathered}

†Dimensionsofmass(m)=[M

1

L

0

T

0

]

\begin{gathered}\dag \bf \: Dimensions \: of \: gravitational \:constant \: (G) = [M^{ - 1} L^3T^{ - 2} ] \\\end{gathered}

†Dimensionsofgravitationalconstant(G)=[M

−1

L

3

T

−2

]

\begin{gathered}\implies \sf [M^0L^0T^1] =[M^0L^1T^0] ^a [M^1L^0T^0]^b [M^{ - 1} L^3T^{ - 2} ]^c \\ \end{gathered}

⟹[M

0

L

0

T

1

]=[M

0

L

1

T

0

]

a

[M

1

L

0

T

0

]

b

[M

−1

L

3

T

−2

]

c

\begin{gathered}\implies \sf [M^0L^0T^1] =[M]^{b - c} [L]^{a + 3c} [T]^{ - 2c} \\ \end{gathered}

⟹[M

0

L

0

T

1

]=[M]

b−c

[L]

a+3c

[T]

−2c

• On comparing the powers we have:

\implies b - c = 0⟹b−c=0

\implies b = c \: \: \: ....(ii)⟹b=c....(ii)

\implies a + 3c = 0 \: \: \: ....(iii)⟹a+3c=0....(iii)

\implies - 2c = 1⟹−2c=1

\implies \bf c = \dfrac{ -1 }{2} \: \: \: ....(iv)⟹c=

2

−1

....(iv)

Substituting value of c = -1/2 from equation (iv) to equation (ii) :

\begin{gathered}\implies b = c \\ \end{gathered}

⟹b=c

\implies \bf b = \dfrac{ - 1}{2}⟹b=

2

−1

Also substitue the value of c from equation (iv) to equation (ii)

\implies a + 3c = 0⟹a+3c=0

\implies a + 3 \times \dfrac{ - 1}{2} = 0⟹a+3×

2

−1

=0

\implies a - \dfrac{ 3}{2} = 0⟹a−

2

3

=0

\implies \bf a = \dfrac{ 3}{2}⟹a=

2

3

Now, Substituting the value of a, b and c in the equation (I):

\begin{gathered}\implies \sf [T] = k [r]^{ \frac{3}{2} }[m]^{ \frac{ - 1}{2} } [G]^{ \frac{ - 1}{2} } \\ \end{gathered}

⟹[T]=k[r]

2

3

[m]

2

−1

[G]

2

−1

\begin{gathered}\implies \sf [T]^{2} = k [r]^{3 }[m]^{ - 1 } [G]^{ - 1 } \\ \end{gathered}

⟹[T]

2

=k[r]

3

[m]

−1

[G]

−1

\implies \sf [T]^{2} = k [r]^{3 }⟹[T]

2

=k[r]

3

\implies \sf [T]^{2} \propto [r]^{3 }⟹[T]

2

∝[r]

3

\implies \underline{ \boxed{ \orange{\bf T^{2} \propto r^{3 }}}}⟹

T

2

∝r

3

Hence, Proved!

Similar questions