Math, asked by tejalpagariya, 9 months ago

2. Answer the following
Find the number of sides of a regular polygon
each of its interior angle is3pie /4radian​

Answers

Answered by mathdude500
0

\large\underline{\sf{Solution-}}

Given that,

\sf \: Interior \: angle \: of \: a \: polygon \:  =  \: \dfrac{3\pi}{4}  \\  \\

We know,

\sf \: Interior \: angle \:  +  \: Exterior \: angle  =  \: \pi  \\  \\

\sf \: \dfrac{3\pi}{4} \:  +  \: Exterior \: angle  =  \: \pi  \\  \\

\sf \:  Exterior \: angle  =  \: \pi   - \dfrac{3\pi}{4}\\  \\

\sf \:  Exterior \: angle  =  \:  \dfrac{4\pi - 3\pi}{4}\\  \\

\bf\implies \:Exterior \: angle \: =  \: \dfrac{\pi}{4} \\  \\

Now, we know

\sf \: Number \: of \: sides \:of \: polygon \:  =  \: \dfrac{2\pi}{ \: Exterior \: angle \:}  \\  \\

So,

\sf \: Number \: of \: sides \:of \: polygon \:  =  \: \dfrac{2\pi}{ \: \dfrac{\pi}{4} \:}  \\  \\

\sf \: Number \: of \: sides \:of \: polygon \:  =  2\pi \times  \frac{4}{\pi}   \\  \\

\bf\implies \: Number \: of \: sides \:of \: polygon \:  =  8  \\  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Number \: of \: sides & \bf Sum \: of \: all \: interior  \: angles\\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 3 & \sf 180 \degree \\ \\ \sf 4 & \sf 360\degree \\ \\ \sf 5 & \sf 540\degree\\ \\ \sf 6 & \sf 720\degree \end{array}} \\ \end{gathered} \\

Answered by ronalshoey
0

Answer:

number of sides of the given polynomial is 8 i.e. octagon

Attachments:
Similar questions