Math, asked by anishup89, 4 months ago

х2- ax/b + x2 - bx/a + x2 - Зах – 3bx/
a + b
= 0​

Answers

Answered by LilBabe
268

Question

  \large\bf \: \frac{ x {}^{2}  -  \frac{ax}{b} + x {}^{2}  -  \frac{bx}{a} + x {}^{2}  - 3ax - 3bx}{a + b} = 0

Answer

  \large\bf \: \frac{ x {}^{2}  -  \frac{ax}{b} + x {}^{2}  -  \frac{bx}{a} + x {}^{2}  - 3ax - 3bx}{a + b} = 0

  \mapsto\tt \: \frac{  \cancel{x {}^{2}}  -  \frac{ax}{b} +  \cancel{x {}^{2}}  -  \frac{bx}{a} + x {}^{2}  - 3ax - 3bx}{a + b} = 0

 \mapsto \: \tt \: \frac{  -  \frac{ax}{b}  -  \frac{bx}{a} + x {}^{2}  - 3ax - 3bx}{a + b} = 0

\mapsto \: \tt \: \frac{  -  \frac{a(ax) - b(bx)}{a \times b}    +   x {}^{2}  - 3ax - 3bx}{a + b}  = 0

 \mapsto \: \tt \: \frac{  -  \frac{a {}^{2}x - b {}^{2}x }{ab}    +   x {}^{2}  - 3x (a-b) }{a + b} = 0

 \mapsto \: \tt \: \frac{  -  \frac{x(a {}^{2} - b {}^{2}  )}{ab}    +   x {}^{2}  - 3x (a-b) }{a + b}0 = 0

 \mapsto \: \tt \: \frac{  -  x(a {}^{2} - b {}^{2}  )    +   x {}^{2}  - 3x (a-b) }{a {}^{2}  + b {}^{2} } = 0

 \mapsto \: \tt \: \frac{  -   {x(\cancel{a {}^{2} - b {}^{2}  )} }   +   x {}^{2}  - 3x (a-b) }  { \cancel{a {}^{2}  + b {}^{2} }} = 0

  \tt - x + x {}^{2}  - 3x(a - b) = 0

 \tt  x {}^{2}  - 4x(a - b) = 0

Either,

x²-4x=0

x² = 4x

x = √4x

x = 2x

0r,

a-b=0

a=b

Similar questions