Math, asked by khyati112006, 3 months ago

2(ax - by) +(a + 4b) = 0
2(bx + ay) + (b - 4a) = 0
solve for x and y
please its very important
give the correct answer
i will mark the answer brainliest ❤️❤️❤️​

Answers

Answered by mathdude500
1

\large\underline\blue{\bold{Given \:  Question :-  }}

Solve for x and y :-

2(ax - by) +(a + 4b) = 0

2(bx + ay) + (b - 4a) = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

 \huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Consider

\bf \:  ⟼ 2(ax - by) +(a + 4b) = 0

can be rewritten as

\sf \:  ⟼ \: 2ax - 2by =  -  a  -  \: 4b \: \sf \:  ⟼ \: (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Now consider,

\bf \:  ⟼  \: 2(bx + ay) + (b - 4a) = 0

can be rewritten as,

\sf \:  ⟼ \: 2bx + 2ay = 4a - b \: \sf \:  ⟼ \: (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

Now, multiply equation (1) by a and (2) by b, we get

\sf \:  ⟼ \:  {2a}^{2} x - 2aby =  -  {a}^{2} - 4ab  \: \sf \:  ⟼ \: (3)

\sf \:  ⟼ \:  {2b}^{2} x + 2aby = 4ab -  {b}^{2}  \: \sf \:  ⟼ \: (4)

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Now, on adding equation (3) and (4), we get

\sf \:  ⟼ \: 2x( {a}^{2}  +  {b}^{2} ) =  -  {a}^{2}  -  {b}^{2}

\sf \:  ⟼ \: 2x \cancel{( {a}^{2}  +  {b}^{2} )} =  -  \cancel{( {a}^{2}  +  {b}^{2} )}

\bf\implies \: \: x =  - \dfrac{1}{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

On substituting the value of x in equation (1), we get

\sf \:  ⟼ \:  -  \cancel{2}a (\dfrac{1}{ \cancel{2}})  - 2by =  -  a  -  \: 4b \: \sf \: 

\sf \:  ⟼ \:  - a - 2by =   - a \: - 4b

\sf \:  ⟼ \:   - 2by =   -  \: 4b \: \sf \: 

\bf\implies \: \: y = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, \: x  \: =   \: -  \: \dfrac{1}{2}  \: and \: y \:  =  \: 2}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions