{α2+b2}a square + b square whole cube
Attachments:
Answers
Answered by
3
a^2 - b^2 = (a-b)(a+b)
a^3 - b^3 = (a - b)(a^2+ ab + b^2)
a^3 + b^3 = (a + b)(a^2 - ab + b^2)
(a + b)^2 = a^2 + 2ab + b^2
(a - b)^2 = a^2 - 2ab +b^2
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3
Answered by
3
Answer
________________________
let's assume square as 2
(a2-b2)3+(b2-c2)3+(c2-a2)3 /(-b)3+(b-c)3+(c-)3
+a6-b6+b3-c6+c3-a6 / -b3+b3-c3-c3
-b3+c3/0
Thanks☺☺
Similar questions