2 bodies masses m1 and m2 are connected by a light string which passes over a frictionless massless pulley . If the pulley is moving upward with uniform acceleration g/2 , then tension in the string is -
1) 3 m1 m2 g / m1 + m2.
2)m1 + m2 g / 4m1 m2
3)2 m1 m2 g / m1 + m2
4)m1 m2 g / m1 + m2
Answers
Answered by
8
⭕️When system is accelerating upward with acceleration (g/2) then the net downward acceleration. by the masses will be :-
⇒ g + g/2 = 3g/2
⭕️Now,
⇒ M(3g/2) – T = Ma➖➖➖➖(1)
⇒ T – m(3g/2) = ma➖➖➖➖(2)
⭕️Adding ;
⇒ (3g/2)(M – m) = a(M + m)
⇒a = (3g/2)(M – m)/(M + m)
So,
⭕️From (2) = T = m(3g/2) + ma
⇒∴ T = m(3g/2) + (m)(3g/2)(M – m)/(M + m)
⇒∴ T = 3mgM/(M + m)
⇒ ∴ This is the tension in the string.
⇒ g + g/2 = 3g/2
⭕️Now,
⇒ M(3g/2) – T = Ma➖➖➖➖(1)
⇒ T – m(3g/2) = ma➖➖➖➖(2)
⭕️Adding ;
⇒ (3g/2)(M – m) = a(M + m)
⇒a = (3g/2)(M – m)/(M + m)
So,
⭕️From (2) = T = m(3g/2) + ma
⇒∴ T = m(3g/2) + (m)(3g/2)(M – m)/(M + m)
⇒∴ T = 3mgM/(M + m)
⇒ ∴ This is the tension in the string.
Attachments:
Answered by
5
❤️❤️
The answer of u r question is..✌️✌️
Ans:✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️
Then,
M(3g/2)-T= Ma°°°°°°°°°°°°°°°°1
T - m(3g/2) = ma°°°°°°°°°°°°°°2
Adding equations.
(3g/2)(M-m) = a (M+m)
a=(3g/2) (M-n)/M+m
From °°°°°°°°°°°°°°°2
T = m(3g/2) (M-m) / (M+m)
T = 3mgM/(M+m)
Hope it helps uu buddy!!❤️❤️
Thank you..☺️☺️
The answer of u r question is..✌️✌️
Ans:✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️✍️
Then,
M(3g/2)-T= Ma°°°°°°°°°°°°°°°°1
T - m(3g/2) = ma°°°°°°°°°°°°°°2
Adding equations.
(3g/2)(M-m) = a (M+m)
a=(3g/2) (M-n)/M+m
From °°°°°°°°°°°°°°°2
T = m(3g/2) (M-m) / (M+m)
T = 3mgM/(M+m)
Hope it helps uu buddy!!❤️❤️
Thank you..☺️☺️
Similar questions
Math,
7 months ago
Environmental Sciences,
7 months ago
Biology,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago