Physics, asked by AMIT123AMIT, 10 months ago

2 cars with velocities 10 m/s and 20 m/s are travelling in opposite directions, having uniform retardation of 2m/s^2 and 1m/s^2 respectively. Find minimum separation between them such that they don't collide

Answers

Answered by bandhuyadav96
0

Answer:

find the sumsimplesum simplesion fivdficefivd ficefirefice fireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefireficeireficefireficefireficefireficefireficefireficefireficefirefice

Answered by dk6060805
0

Minimum Separation is 10 m

Explanation:

Let the Velocity of A = 10 m/s

Velocity of B = 20 m/s

Retardation of A = -2m/s^{2}

Retardation of B = -1m/s^{2}

Since, Relative Velocity of A with respect of B must be Zero,

So, V_{R} = 0

The Relative initial velocity of A with respect of B is V_{A} - V_{B}

& Relative acceleration of A with respect of B is (-2 - (-1)) = -2 + 1 = -1 m/s

Using equation v^{2} - u^{^{2}} = 2as

0 = (V_{A}-V_{B})^{2}+2\times(-a)(s)

s = \frac{(V_{A}-V_{B})^{2}}{2a}

s = \frac{10 - 20}{-2a}

s = \frac{-10}{-1}

s = 10 m

Minimum Separation between them is 10 m.

Similar questions