Math, asked by AarthVerma, 10 months ago

2 cones have their height in the ratio6:7 and thier ratio of radius of the base is 7:6 what is the ratio of thier volume​

Answers

Answered by Anonymous
1

Answer:-

\sf{The \ ratio \ of \ their \ volumes }

\sf{is \ 7:6}

Given:

  • Two cones have their height in the ratio of 6:7

  • Their ratio of radius is 7:6

To find:

  • The ratio of volumes of cones.

Solution:

\sf{For \ 1^{st} \ cone,}

\sf{Height=h_{1},}

\sf{Radius=r_{1}}

\sf{For \ 2^{nd} \ cone,}

\sf{Height=h_{2},}

\sf{Radius=r_{2}}

\sf{According \ to \ the \ given \ condition}

\sf{\dfrac{h_{1}}{h_{2}}=\dfrac{6}{7}}

\sf{\therefore{6h_{2}=7h_{1}}}

\sf{\longmapsto{\therefore{h_{2}=\dfrac{7h_{1}}{6}...(1)}}}

\sf{\dfrac{r_{1}}{r_{2}}=\dfrac{7}{6}}

\sf{\therefore{7r_{2}=6r_{1}}}

\sf{\longmapsto{\therefore{r_{2}=\dfrac{6r_{1}}{7}...(2)}}}

\boxed{\sf{Volume \ of \ cone=\dfrac{1}{3}\times\pi \times \ r^{2}\times \ h}}

\sf{\therefore{Ratio \ of \ two \ comes}}

\sf{=\dfrac{\dfrac{1}{3}\times\pi\times \ r_{1}^{2}\times \ h_{1}}{\dfrac{1}{3}\times\pi\times \ r_{2}^{2}\times \ h_{2}}}

\sf{=\dfrac{r_{1}^{2}\times \ h_{1}^{2}}{r_{2}^{2}\times \ h_{2}^{2}}}

\sf{...from \ (1) \ and \ (2), \ we \ get}

\sf{=\dfrac{r_{1}^{2}\times \ h_{1}^{2}}{(\dfrac{6r_{1}}{7})^{2}\times\dfrac{7h_{1}}{6}}}

\sf{=\dfrac{r_{1}^{2}\times \ h_{1}\times7\times7\times6}{r_{1}^{2}\times \ h_{1}\times6\times6\times7}}

\sf{=\dfrac{7}{6}}

\sf{=7:6}

\sf\purple{\tt{\therefore{The \ ratio \ of \ their \ volumes }}}

\sf\purple{\tt{is \ 7:6}}

Similar questions