Math, asked by hariomsinghchauhan40, 10 months ago

2. Consider the following frequency distribution of the heights of 00 students of a dana
Height (in cm) 150 - 155 155 160 160-165 165 170 170-175 175 180
No of students 15 13 10 8 1 9
5
The upper limit of the median class in the given data is
(a) 165
(b) 155
(c) 160
(d) 170​

Answers

Answered by tubhcreators
0

Answer:

a)165

thank and rate

Answered by Alcaa
2

Answer:

Option (a) 165

Step-by-step explanation:

We are given the following frequency distribution of the heights of 70 students ;

  Height (in cm)          No. of students (f)         Cumulative frequency (cf)

      150 - 155                          15                                            15

      155 - 160                          13                                            28

      160 - 165                          10                                            38

      165 - 170                           8                                             46

      170 - 175                           19                                            65

      175 - 180                          5                                             70

                                            ∑f = 70          

Firstly, we will calculate \frac{N}{2} , where N = \sum f

So,  \frac{N}{2} = \frac{70}{2} = 35

Now, value of cumulative frequency just greater than or equal to 35 is 38.

Hence, the median class is 160 - 165.  

Therefore, the upper limit of the median class in the given data is 165.      

Similar questions