2 cos theta; 3 sin theta - 4 sin cube theta = 1; prove
Answers
Answered by
0
Answer:
4 = Cos^{6}\theta - 4Cos^{4}\theta + 8Cos^{2}\theta
Step-by-step explanation:
In the question
We have
Sin\theta + Sin^{2}\theta+ Sin^{3}\theta = 1
Sin\theta + Sin^{3}\theta = 1 - Sin^{2}\theta
Sin\theta (1 +Sin^{2}\theta) = Cos^{2}\theta
Sin\theta(1 + 1 - Cos^{2}\theta) = Cos^{2}\theta
Sin\theta (2 - Cos^{2}\theta) = Cos^{2}\theta
Squaring on both sides
[Sin\theta(2 - Cos^{2}\theta)]^2 =[Cos^2}\theta]^2
Sin^{2}\theta (2 - Cos^{2}\theta)^2 = Cos^{4}\theta
(1 - Cos^{2}\theta) (4 + Cos^{4}\theta - 4Cos^{2}\theta) = Cos^{4}\theta
4 + Cos^{4}\theta - 4Cos^{2}\theta - 4Cos^{2}\theta - Cos^{6}\theta + 4Cos^{4}\theta = Cos^{4}\theta
4 = Cos^{6}\theta + 8Cos^{2}\theta - 4Cos^{4}\theta
4 = Cos^{6}\theta - 4Cos^{4}\theta + 8Cos^{2}\theta
Hence the result.
Similar questions