Math, asked by sharmaniranjan5678, 5 days ago

2 cos x + 1 is equal to sin x solve the equation,

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:2cosx + 1 = sinx

On squaring both sides, we get

\rm :\longmapsto\: {(2cosx + 1)}^{2}  =  {sin}^{2}x

\rm :\longmapsto\: {4cos}^{2}x + 1 + 4cosx = 1 -  {cos}^{2}x

\rm :\longmapsto\: {5cos}^{2}x  + 4cosx = 0

\rm :\longmapsto\:cosx(5cosx + 4) = 0

\rm \implies\:cosx = 0 \:  \:  \: or \:  \:  \: cosx =  -  \: \dfrac{4}{5}

Consider, Case - 1

\red{\rm :\longmapsto\:cosx = 0}

\rm \implies\:\boxed{ \tt{ \: x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z \: }}

Consider, Case - 2

\red{\rm :\longmapsto\:cosx =  - \dfrac{4}{5}}

Let assume that

\red{\rm :\longmapsto\:cosy =  \dfrac{4}{5} \: so \: that \: y \:  =  \:  {tan}^{ - 1} \dfrac{3}{4} }

So,

\rm :\longmapsto\:cosx =  - cosy

\rm :\longmapsto\:cosx =  cos(\pi - y)

We know,

\boxed{ \tt{ \: cosx = cosy\rm \implies\: x = 2n\pi \pm \: y\: \forall \: n \in \: Z \: }}

So, using this identity, we get

\rm :\longmapsto\: x = 2n\pi \pm \: (\pi - y)\: \forall \: n \in \: Z

\bf \implies\:\: x = 2n\pi \pm \: \pi  \mp \:  y\: \forall \: n \in \: Z

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions