Math, asked by sajalpal794, 1 month ago

2- cos x = 2 tan x/2 general solution​

Answers

Answered by senboni123456
13

Step-by-step explanation:

We have,

2 -  \cos(x)  = 2 \tan \bigg( \frac{x}{2}  \bigg)  \\

 \implies2 -   \frac{1 -  \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }{1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }   = 2 \tan \bigg( \frac{x}{2}  \bigg)  \\

 \implies  \frac{2 \bigg \{ 1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) \bigg \} - 1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }{1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }   = 2 \tan \bigg( \frac{x}{2}  \bigg)  \\

 \implies  \frac{2   +   2\tan^{2}  \bigg( \dfrac{x}{2}  \bigg) - 1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }{1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }   = 2 \tan \bigg( \frac{x}{2}  \bigg)  \\

 \implies  \frac{1  +   3\tan^{2}  \bigg( \dfrac{x}{2}  \bigg)  }{1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg) }   = 2 \tan \bigg( \frac{x}{2}  \bigg)  \\

 \implies  1  +   3\tan^{2}  \bigg( \dfrac{x}{2}  \bigg)   = 2 \tan \bigg( \frac{x}{2}  \bigg)  \bigg \{ 1  +   \tan^{2}  \bigg( \dfrac{x}{2}  \bigg)  \bigg \} \\

 \implies  1  +   3\tan^{2}  \bigg( \dfrac{x}{2}  \bigg)   = 2 \tan \bigg( \frac{x}{2}  \bigg)   +   2\tan^{3}  \bigg( \dfrac{x}{2}  \bigg)  \\

 \implies         2\tan^{3}  \bigg( \dfrac{x}{2}  \bigg) -  3\tan^{2}  \bigg( \frac{x}{2}  \bigg) +  2 \tan \bigg( \frac{x}{2}  \bigg) - 1 = 0\\

 \implies         2\tan^{3}  \bigg( \dfrac{x}{2}  \bigg) -  2\tan^{2}  \bigg( \frac{x}{2}    \bigg) - \tan^{2}  \bigg( \frac{x}{2}    \bigg)+   \tan \bigg( \frac{x}{2}  \bigg) + \tan  \bigg( \frac{x}{2}    \bigg) - 1 = 0\\

 \implies    2\tan^{2}  \bigg( \frac{x}{2}    \bigg) \bigg \{    \tan  \bigg( \dfrac{x}{2}  \bigg) - 1 \bigg \} - \tan \bigg( \frac{x}{2}    \bigg) \bigg \{  \tan \bigg( \frac{x}{2}    \bigg) - 1 \bigg \}   +  1 \bigg \{ \tan  \bigg( \frac{x}{2}    \bigg) - 1 \bigg \} = 0\\

 \implies   \bigg \{    \tan  \bigg( \frac{x}{2}  \bigg) - 1 \bigg \} \bigg \{ 2\tan^{2}  \bigg( \frac{x}{2}    \bigg)   - \tan \bigg( \frac{x}{2}    \bigg) + 1 \bigg \} = 0\\

 \implies   \bigg \{    \tan  \bigg( \frac{x}{2}  \bigg) - 1 \bigg \} \bigg \{ 2\tan^{2}  \bigg( \frac{x}{2}    \bigg)   - 2\tan \bigg( \frac{x}{2}    \bigg)  +  \tan \bigg( \frac{x}{2}    \bigg) + 1 \bigg \} = 0\\

 \implies   \bigg \{    \tan  \bigg( \frac{x}{2}  \bigg) - 1 \bigg \} \bigg [  2\tan  \bigg( \frac{x}{2}    \bigg) \bigg \{ \tan \bigg( \frac{x}{2}    \bigg) - 1 \bigg \} +1 \bigg \{  \tan \bigg( \frac{x}{2}    \bigg) + 1 \bigg \} \bigg]  = 0\\

 \implies   \bigg \{    \tan  \bigg( \frac{x}{2}  \bigg) - 1 \bigg \} \bigg \{ 2\tan  \bigg( \frac{x}{2}    \bigg) + 1 \bigg \} \bigg \{ \tan \bigg( \frac{x}{2}    \bigg) - 1 \bigg \}   = 0\\

 \implies   \bigg \{    \tan  \bigg( \frac{x}{2}  \bigg) - 1 \bigg \}^{2}.  \bigg \{ 2\tan  \bigg( \frac{x}{2}    \bigg) + 1 \bigg \}  = 0\\

  \rm \:  Either \:  \:   \tan  \bigg( \frac{x}{2}  \bigg) - 1   = 0 \:  \:  \: or \:  \:  \: 2\tan  \bigg( \frac{x}{2}    \bigg) + 1  = 0\\

  \rm \implies \:  \:   \tan  \bigg( \frac{x}{2}  \bigg)  =  1   \:  \:  \: or \:  \:  \: 2\tan  \bigg( \frac{x}{2}    \bigg)  =   - 1  \\

  \rm \implies \:  \:   \tan  \bigg( \frac{x}{2}  \bigg)  =  1   \:  \:  \: or \:  \:  \: \tan  \bigg( \frac{x}{2}    \bigg)  =   - \frac{ 1 }{2} \\

  \rm \implies \:  \:   \frac{x}{2}    =  n\pi +  \frac{\pi}{4}  \:  \:  \: or \:  \:  \: \frac{x}{2}      = m\pi  -  \tan^{ - 1} \bigg( \frac{ 1 }{2}  \bigg)\\

  \rm \implies \:  \:   x    =  2n\pi +  \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  2\tan^{ - 1} \bigg( \frac{ 1 }{2}  \bigg)\\

  \rm \implies \:  \:   x    = (4n + 1) \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  \tan^{ - 1} \bigg \{ \frac{ 2 \times  \frac{1}{2}  }{1 -  {( \frac{1}{2}) }^{2} }  \bigg \}\\

  \rm \implies \:  \:   x    = (4n + 1) \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  \tan^{ - 1} \bigg \{ \frac{ 1  }{1 -   \frac{1}{4} }  \bigg \}\\

  \rm \implies \:  \:   x    = (4n + 1) \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  \tan^{ - 1} \bigg \{ \frac{ 1  }{ \frac{4 - 1}{4} }  \bigg \}\\

  \rm \implies \:  \:   x    = (4n + 1) \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  \tan^{ - 1} \bigg \{ \frac{ 1  }{ \frac{3}{4} }  \bigg \}\\

  \rm \implies \:  \:   x    = (4n + 1) \frac{\pi}{2}  \:  \:  \: or \:  \:  \: x      = 2m\pi  -  \tan^{ - 1} \bigg ( \frac{ 4 }{ 3 }  \bigg)\\

Similar questions