Math, asked by Anonymous, 2 months ago

2 - cos2θ = 3sinθcosθ, sinθ ≠ cosθ then tanθ is??
hey ☺❤​

Answers

Answered by Swarup1998
0

Given:

2-cos2\theta=3sin\theta cos\theta

To find: tan\theta

Step-by-step explanation:

Now, 2-cos2\theta=3sin\theta cos\theta

\Rightarrow 2(sin^{2}\theta+cos^{2}\theta)-(cos^{2}\theta-sin^{2}\theta)=3 sin\theta cos\theta

\Rightarrow 2sin^{2}\theta+2cos^{2}\theta-cos^{2}\theta+sin^{2}\theta=3 sin\theta cos\theta

\Rightarrow 3sin^{2}\theta-3 sin\theta cos\theta+cos^{2}\theta=0

\Rightarrow 3 tan^{2}\theta-3 tan\theta+1=0 since cos\theta\neq 0

Using Sridhar Acharya's formula, we get

\quad tan\theta=\frac{3\pm\sqrt{9-12}}{6}

\Rightarrow tan\theta=\frac{3\pm\sqrt{-3}}{6}

\Rightarrow tan\theta=\frac{3\pm i\sqrt{3}}{6} where i=\sqrt{-1}

Answer: tan\theta=\frac{3\pm i\sqrt{3}}{6}

Similar questions