Math, asked by bhagyashri10, 1 year ago

2 cosec 2x + cosecx =secx cot (x/2)​

Answers

Answered by MaheswariS
43

Answer:

2\:cosec2x+cosecx=\cot\frac{x}{2}\:secx

Step-by-step explanation:

2\:cosec2x+cosecx

=2(\frac{1}{sin2x})+\frac{1}{sinx}

=2(\frac{1}{2\:sinx\:cosx})+\frac{1}{sinx}

=\frac{1}{sinx\:cosx}+\frac{1}{sinx}

=\frac{1+cosx}{sinx\:cosx}

=\frac{1+cosx}{sinx}\times\frac{1}{cosx}

=\frac{1+cosx}{sinx}\times\:secx

using

\boxed{cosA=2\:cos^2\frac{A}{2}-1}

\boxed{sinA=2\:sin\frac{A}{2}\:cos\frac{A}{2}}

=\frac{2\:cos^2\frac{x}{2}}{2\:sin\frac{x}{2}\:cos\frac{x}{2}}\times\:secx

=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}\times\:secx

=\cot\frac{x}{2}\:secx

\implies\:\boxed{2\:cosec2x+cosecx=\cot\frac{x}{2}\:secx}

Answered by rameshwarm2004
1

Step-by-step explanation:

the above image has the answer

Attachments:
Similar questions