2 cosec square 30°+x. Sin square 60° - 3 tan square 30° = 10
Answers
Answered by
3
Given data :
- 2 cosec² 30⁰ + x sin² 60⁰ - 3 tan² 30⁰ = 10
To find : Determine the value of x.
Solution :
➜ 2 cosec² 30⁰ + x sin² 60⁰ - 3 tan² 30⁰ = 10
➜ 2 * 1/sin² 30⁰ + x sin² 60⁰ - 3 tan² 30⁰ = 10
➜ 2 * {1/½}² + x * {√3/2}² - 3 * {1/√3}² = 10
➜ 2 * {2}² + x * 3/4 - 3 * 1/3 = 10
➜ 2 * 4 + 3x/4 - 3/3 = 10
➜ 8 + 3x/4 - 1 = 10
➜ 8 - 1 + 3x/4 = 10
➜ 7 + 3x/4 = 10
➜ 3x/4 = 10 - 7
➜ 3x/4 = 3
➜ 3x = 3 * 4
➜ 3x = 12
➜ x = 12/3
➜ x = 4
Answer : Hence, the value of x is 4.
{More info :
Trigonometric Fundamental identities :
- sin θ/cos θ = tan θ
- sec θ = 1/cos θ
- cosec θ = 1/sin θ
- sin² θ + cos² θ = 1
- 1 + tan² θ = sec² θ
- 1 + cot² θ = cosec² θ
Trigonometric ratios of special angles :
- sin 0⁰ = 0
- sin 30⁰ = 1/2
- sin 45⁰ = 1/√2
- sin 60⁰ = √3/2
- sin 90⁰ = 1
- cos 0⁰ = 1
- cos 30⁰ = √3/2
- cos 45⁰ = 1/√2
- cos 60⁰ = 1/2
- cos 90⁰ = 0
- tan 0⁰ = 0
- tan 30⁰ = 1/√3
- tan 45⁰ = 1
- tan 60⁰ = √3
- tan 90⁰ = ∞ (infinity)}
Learn more : sin2pie/3+sin2pie/4+sin 2 pi/6
https://brainly.in/question/48500769
Answered by
0
Step-by-step explanation:
okay ! bye have a great day ☺️
Attachments:
Similar questions